Physics 1402: Lecture 35 Today’s Agenda Announcements: –Midterm 2: graded soon … »solutions –Homework 09: Wednesday December 9 Optics –Diffraction »Introduction.

Slides:



Advertisements
Similar presentations
Diffraction around an edge and through an aperture
Advertisements

Copyright © 2009 Pearson Education, Inc. Chapter 35 Diffraction and Polarization.
Diffraction, Gratings, Resolving Power Textbook sections 28-4 – 28-6 Physics 1161: Lecture 21.
Cutnell/Johnson Physics 7th edition
1308 E&M Diffraction – light as a wave Examples of wave diffraction: Water waves diffract through a small opening in the dam. Sound waves diffract through.
The waves spread out from the opening!
Copyright © 2009 Pearson Education, Inc. Diffraction and Polarization.
Topic 11.3 Diffraction.
last dance Chapter 26 – diffraction – part ii
Diffraction of Light Waves
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Single-Slit Diffraction: Interference Caused by a Single “Slit” or “Hole in the Wall”
PHY 1371Dr. Jie Zou1 Chapter 38 Diffraction and Polarization.
Interference & Diffraction
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Diffraction Physics 202 Professor Lee Carkner Lecture 26.
Physics 52 - Heat and Optics Dr. Joseph F. Becker Physics Department San Jose State University © 2005 J. F. Becker.
Physics 1502: Lecture 34 Today’s Agenda Announcements: –Midterm 2: graded soon … –Homework 09: Friday December 4 Optics –Interference –Diffraction »Introduction.
1 Chapter 10 Diffraction March 9, 11 Fraunhofer diffraction: The single slit 10.1 Preliminary considerations Diffraction: The deviation of light from propagation.
Chapter 25: Interference and Diffraction
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Diffraction, Gratings, Resolving Power
PHY 102: Waves & Quanta Topic 8 Diffraction II John Cockburn Room E15)
Multiple-Slit Interference Uniform slits, distance d apart. Light of wavelength. Screen L away “Thin” slits  compared to d) L >> d then path length difference.
Physics 1C Lecture 27C Quiz # on Monday: All of Chapters 26 and 27.
Diffraction vs. Interference
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
3: Interference, Diffraction and Polarization
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Lecture 29 Physics 2102 Jonathan Dowling Ch. 36: Diffraction.
Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing.
Diffraction When monochromatic light from a distance
Lecture 16 Diffraction Ch. 36 Topics –Newtons Rings –Diffraction and the wave theory –Single slit diffraction –Intensity of single slit diffraction –Double.
The Hong Kong Polytechnic University Optics 2----by Dr.H.Huang, Department of Applied Physics1 Diffraction Introduction: Diffraction is often distinguished.
S-110 A.What does the term Interference mean when applied to waves? B.Describe what you think would happened when light interferes constructively. C.Describe.
Physics 1C Lecture 27B.
The waves spread out from the opening!
Chapter 38: Diffraction and Polarization  For a single opening in a barrier, we might expect that a plane wave (light beam) would produce a bright spot.
Diffraction Introduction to Diffraction Patterns
Light of wavelength passes through a single slit of width a. The diffraction pattern is observed on a screen a distance x from the slit. Q double.
Lecture 27-1 Thin-Film Interference-Cont’d Path length difference: (Assume near-normal incidence.) destructive constructive where ray-one got a phase change.
Light Wave Interference In chapter 14 we discussed interference between mechanical waves. We found that waves only interfere if they are moving in the.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
Difference of Optical Path Length Interference Two waves One wave Many waves Diffraction.
1 W14D2: Interference and Diffraction Experiment 6 Today’s Reading Course Notes: Sections
1 Fraunhofer Diffraction: Single, multiple slit(s) & Circular aperture Fri. Nov. 22, 2002.
Physics 203/204 6: Diffraction and Polarization Single Slit Diffraction Diffraction Grating Diffraction by Crystals Polarization of Light Waves.
Chapter 38 Diffraction Patterns and Polarization.
Fundamental of Optical Engineering Lecture 5.  Diffraction is any behavior of light which deviates from predictions of geometrical optics.  We are concerned.
Physics 1202: Lecture 26 Today’s Agenda Announcements: –Midterm 2: Friday Nov. 6… –Chap. 18, 19, 20, and 21 No HW for this week (midterm)No HW for this.
Chapter 38: Diffraction Patterns and Polarization.
Interference and Diffraction. Conditions for Interference Coherent Sources - The phase between waves from the multiple sources must be constant. Monochromatic.
Physics 1202: Lecture 28 Today’s Agenda Announcements: –Midterm 2: solutions HW 8 this FridayHW 8 this Friday Diffraction –Review Polarization –Reflection.
1 Chapter 33: Interference and Diffraction Homework: 17, 31, 37, 55 Cover Sections: 1, 2, 3, 4, 6, 7 Omit Sectons: 5, 8.
Physics 102: Lecture 21, Slide 1 Diffraction, Gratings, Resolving Power Physics 102: Lecture 21.
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
Thin-Film Interference Summary
Phys102 Lecture 26, 27, 28 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution.
Double the slit width a and double the wavelength
Interference Requirements
Fig 38-CO The Hubble Space Telescope does its viewing above the atmosphere and does not suffer from the atmospheric blurring, caused by air turbulence,
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
A. Double the slit width a and double the wavelength l.
Diffraction, Gratings, Resolving Power
Diffraction vs. Interference
LEAD Tutors/Peer Instructors Needed!
The waves spread out from the opening!
Presentation transcript:

Physics 1402: Lecture 35 Today’s Agenda Announcements: –Midterm 2: graded soon … »solutions –Homework 09: Wednesday December 9 Optics –Diffraction »Introduction to diffraction »Diffraction from narrow slits »Intensity of single-slit and two-slits diffraction patterns »The diffraction grating

Diffraction

Fraunhofer Diffraction (or far-field) Incoming wave Lens  Screen

Fresnel Diffraction (or near-field) Incoming wave Lens Screen P (more complicated: not covered in this course)

Experimental Observations: (pattern produced by a single slit ?)

First Destructive Interference: (a/2) sin  = ± /2 sin  = ± /a m th Destructive Interference: (a/4) sin  = ± /2 sin  = ± 2  /a Second Destructive Interference: sin  = ± m /a m=±1, ±2, … How do we understand this pattern ? See Huygen’s Principle

So we can calculate where the minima will be ! sin  = ± m /a m=±1, ±2, … Why is the central maximum so much stronger than the others ? So, when the slit becomes smaller the central maximum becomes ?

Phasor Description of Diffraction Can we calculate the intensity anywhere on diffraction pattern ?  =  =  N   / 2  =  y sin (  ) /  = N  = N 2   y sin (  ) / = 2  a sin (  ) / Let’s define phase difference (  ) between first and last ray (phasor) 1st min. 2nd max. central max. (a/  sin  = 1: 1st min.

Yes, using Phasors ! Let take some arbitrary point on the diffraction pattern This point can be defined by angle  or by phase difference between first and last ray (phasor)  The arc length E o is given by : E o = R  sin (  /2) = E R / 2R The resultant electric field magnitude E R is given (from the figure) by : E R = 2R sin (  /2) = 2 (E o /  ) sin (  /2) = E o [ sin (  /2) / (  /2) ] I = I max [ sin (  /2) / (  /2) ] 2 So, the intensity anywhere on the pattern :  = 2  a sin (  ) /

Other Examples What type of an object would create a diffraction pattern shown on the left, when positioned midway between screen and light source ? A penny, … Note the bright spot at the center. Light from a small source passes by the edge of an opaque object and continues on to a screen. A diffraction pattern consisting of bright and dark fringes appears on the screen in the region above the edge of the object.

Resolution (single-slit aperture) Rayleigh’s criterion: two images are just resolved WHEN: When central maximum of one image falls on the first minimum of another image sin  =  / a  min ~  / a

Diffraction patterns of two point sources for various angular separation of the sources Resolution (circular aperture)  min = 1.22 (  / a) Rayleigh’s criterion for circular aperture:

EXAMPLE A ruby laser beam ( = nm) is sent outwards from a 2.7- m diameter telescope to the moon, km away. What is the radius of the big red spot on the moon? a. 500 m b. 250 m c. 120 m d. 1.0 km e. 2.7 km  min = 1.22 (  / a) R / = 1.22 [ / 2.7 ] R = 120 m ! Earth Moon

Two-Slit Interference Pattern with a Finite Slit Size I diff = I max [ sin (  /2) / (  /2) ] 2 Diffraction (“envelope” function):  = 2  a sin (  ) / I tot = I inter. I diff Interference (interference fringes): I inter = I max [cos (  d sin  /  ] 2 smaller separation between slits => ? smaller slit size => ? The combined effects of two-slit and single-slit interference. This is the pattern produced when 650-nm light waves pass through two 3.0- mm slits that are 18 mm apart. Animation

Example The centers of two slits of width a are a distance d apart. Is it possible that the first minimum of the interference pattern occurs at the location of the first minimum of the diffraction pattern for light of wavelength  ? d a a 1st minimum interference: d sin  = /2 1st minimum diffraction: a sin  = The same place (same  ) : /2d = /a a /d =  No!

Application X-ray Diffraction by crystals Can we determine the atomic structure of the crystals, like proteins, by analyzing X-ray diffraction patters like one shown ? A Laue pattern of the enzyme Rubisco, produced with a wide-band x-ray spectrum. This enzyme is present in plants and takes part in the process of photosynthesis. Yes in principle: this is like the problem of determining the slit separation (d) and slit size (a) from the observed pattern, but much much more complicated !

Determining the atomic structure of crystals With X-ray Diffraction (basic principle) 2 d sin  = m  m = 1, 2,.. Crystalline structure of sodium chloride (NaCl). length of the cube edge is a = nm. Crystals are made of regular arrays of atoms that effectively scatter X-ray Bragg’s Law Scattering (or interference) of two X-rays from the crystal planes made-up of atoms