L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Background image: HH 30 JHK HST-NICMOS, courtesy Padgett et al. 1999, AJ 117, 1490
L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks Recent reviews include: Protostars & Planets IV, Mannings, Boss & Russell (eds.) 12 Articles on Disks 5 Articles on Outflows Zuckerman, ARAA 2001, 39: 549 Zuckerman & Song (?), ARAA 2004, in press
L6 - Stellar Evolution II: August-September, L 6: Circumstellar Disks and Outflows
L6 - Stellar Evolution II: August-September, Flattened structures - Disks Inevitable consequence of star formation Rotation Magnetic Fields
L6 - Stellar Evolution II: August-September, Flattened structures - Disks Inevitable consequence of star formation Rotation P.S. Laplace 1796, 1799 Exposition du systeme du monde Mechanique celeste I. Kant 1755 Allgemeine Naturgeschichte und Theorie des Himmels Planetary System Formation...another lecture – another time...
L6 - Stellar Evolution II: August-September, Mass Loss - Outflows Inevitable consequence of star formation Angular Momentum Loss - Redistribution The race between mass accretion & mass loss processses see review article
L6 - Stellar Evolution II: August-September, Lynden-Bell & Pringle 1974, MNRAS 168, 603: Keplerian Disk Differential Rotation + Viscosity Mass Transport Inwards Angular Momentum Transport Outwards See also Gösta Gahm’s lecture
L6 - Stellar Evolution II: August-September, `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick -disk blackbody radiation and thin disk approximation When / Where valid ?
L6 - Stellar Evolution II: August-September, Example: Lin & Papaloizou opacities (1985 PP II) Icy grains H - Molecules bound-free free-free (Cox-Stuart-Alexander)
L6 - Stellar Evolution II: August-September, Beckwith et al. 2000, PP IV Grain Opacities
L6 - Stellar Evolution II: August-September, `standard model´: e.g., Frank, King & Raine Accretion Power in Astrophysics self-consistent structure of steady, optically thick a-disk
L6 - Stellar Evolution II: August-September, observed SEDs of T Tauri Stars & `mean model´ of star+disk D´Alessio et al HABE Disk Structure: Dullemond & Dominik 2004 includes vertical Temperature distribution
L6 - Stellar Evolution II: August-September, Gas Disks – Structure Models Steady Disks around Single Stars Boundary Conditions R in : boundary layer, magnetosphere? R out : ?, interstellar turbulence? Viscosity MHD/rotation (Hawley & Balbus 1995) Opacity , T, …, XYZ,..., , ..., ...) ModelsAdams & Shu 1986 (flat) [examples] Kenyon & Hartmann 1987 (flared) Malbet & Bertout 1991 (vertical structure) D´Allessio et al. 1998, Aikawa & Herbst 1998 (chemistry) Nomura 2002 (2D) Wolf 2003 (3D)
L6 - Stellar Evolution II: August-September, Observations of Keplerian Disks JE Keeler 1895 ApJ 1: 416 The Rings of Saturn spectrum image Courtesy Brandeker, Liseau & Ilyn 2002
L6 - Stellar Evolution II: August-September, Categories of Disks T Tauri Disks: around young stars ( Myr) of half a solar mass ( Msun) at 150 pc distance ( pc) in and/or near molecular clouds Accretion Disks Debris Disks: around young ms-stars ( Myr) of about a solar mass (1 - 2 Msun) at 20 pc distance ( pc) in the general field Vega-excess stellar disks gas rich gas poor
L6 - Stellar Evolution II: August-September, Frequency of Disks High Rate of occurence around young stars NGC % Trapezium cluster 80% IC % Haisch et al and around BDs in Trapezium cluster 65% Muench et al see also G. Gahm’s lecture
L6 - Stellar Evolution II: August-September, Gas Disks - Sizes Size scale (AU)Tracer (mode)*Reference 20000CS (1- 0) (S)Kaifu et al CO (1- 0) (S)Fridlund et al C 18 O (1- 0) (I)Sargent et al < mm (I)Woody et al mm, cm (I)Keene & Masson mm (I)Lay et al H 13 CO + (1- 0) (S)Mizuno et al mm (S)Ladd et al C 18, 17 O (2- 1) (S)Fuller et al CO (1- 0) (I)Ohashi et al H 13 CO + (1- 0) (I)Saito et al H 12, 13 CO + (1- 0) (S, I)Hogerheijde et al.1997, C 18 O + (1- 0) (I)Momose et al Fridlund et al for One Object Size depends on frequency/mode of observation * S=single dish, I=Interferometer
L6 - Stellar Evolution II: August-September, Gas Disks - Sizes T Tauri/HABE disks AUDust: mm-continuum interferometry AUDust: scattered stellar light 300 AUGas: CO lines (evidence for Kepler rotation) Silhouettte disks (``proplyds´´) up to 1000 AUDust: scattered stellar light generally
L6 - Stellar Evolution II: August-September, Gas Disks - Masses H 2 Gas Directly CO and Dust
L6 - Stellar Evolution II: August-September, Gas Disks - Masses Lower limit: to 1 M Sun (based on mm / submm continuum) How good are these numbers ? Do we understand disks ? ? Why ? dust gas +dust Solar Minimum Mass Nebula = M Sun
L6 - Stellar Evolution II: August-September, Gas Disks - Make up gas disks consist of gas and dust what components? what proportions?
L6 - Stellar Evolution II: August-September, T Tauri Disks - Make up van Zadelhoff CO (1)* HCO + (5) HCN (5) CO (200) HCO + (200) HCN (200 ) LkCa 15TW Hya * (N) = depletion factor
L6 - Stellar Evolution II: August-September, T Tauri Disks - Chemistry Molecular abundances (rel. H 2 ) Species LkCa 15TW Hya CO3.4 ( - 7)5.7 ( - 8) HCO (-12)2.2 (-11) H 13 CO + < 2.6(-12)3.6 (-13) DCO + ….7.8 (-13) CN2.4 (-10)1.2 (-10) HCN3.1 (-11)1.6 (-11) H 13 CN….< 8.4(-13) HNC….< 2.6(-12) DCN….< 7.1(-14) CS8.5 (-11)…. H 2 CO4.1 (-11)< 7.1(-13) CH 3 OH< 3.7(-10)< 1.9(-11) N 2 H + < 2.3(-11)< 1.8(-11) H 2 D + < 1.5(-11)< 7.8(-12) Thi 2002
L6 - Stellar Evolution II: August-September, Gas Disks - Evolution Time scales (viscous accretion disk) t dyn ~ t therm ~ (H/R) 2 t visc t dyn ~ 1/ Kepler ~ H/R << 1 if T ~ R -1/2, t visc ~ R t visc ~ 10 5 yr ( /0.01) -1 (R/10 AU)
L6 - Stellar Evolution II: August-September, Gas Disks - Evolution Disk dispersal and disk lifetimes Physical Mechanisms Hollenbach et al PPIV SE = Stellar Encounter (tidal stripping) WS = Stellar wind stripping evap E = photoevaporation external star evap c = photoevaporation central star All for Trapezium conditions
L6 - Stellar Evolution II: August-September, Gas (T Tauri) Disks - Evolution Disk dispersal and disk lifetimes Mass accretion evolution Calvet et al PPIV Average Error Bar
L6 - Stellar Evolution II: August-September, Gas Disks to Debris Disks – Evolution ? See also lecture by G. Gahm f dust = L IR /L vs stellar age (F)IR - excess Stellar luminosity (bolometric) How ?
L6 - Stellar Evolution II: August-September, Gas Disks to Debris Disks – Evolution ? Spangler et al Clusters Individual stars (= 1 zodi)
L6 - Stellar Evolution II: August-September, Debris Disks - Properties debris (collision products) or particulate (gas free) percentage of Main Sequence stars (15%?) (observationally) biased towards Spectral Type A for (detectable) ages <400 Myr Habing et al. 1999, 2001 disk sizes 100 to 2000 AU disk masses >1 to 100 M Moon (small grains) Pre-IRAS Solar system Zodi US Navy Chaplain G. Jones 1855 AJ 4, 94 Vega Blackwell et al. 1983
L6 - Stellar Evolution II: August-September,
L6 - Stellar Evolution II: August-September, How much Gas in Dusty Debris Disks ? Disk evolution hypothesis: gas rich to gas poor Census of material (m gas /m dust ): planet formation planet formation: enough gas for GPs ? planet formation: time scales ? planet formation: seeds of Life ? See review
L6 - Stellar Evolution II: August-September, L 6: conclusions circumstellar disks are a consequence of star formation disks and bipolar outflows/jets are connected disks form potentially planetray systems L 6: open questions what are the physics of disks and their outflows ? how do disks evolve ? what fraction forms planetary systems ? when and how ?