Chemistry 125: Lecture 51 February 15, 2010 More Addition to Alkenes: Organometallic Reagents and Catalysts This For copyright notice see final page of.

Slides:



Advertisements
Similar presentations
Chemistry 125: Lecture 46 February 1, 2010 E2, S N 1, E1 This For copyright notice see final page of this file.
Advertisements

ALKENE AND ALKYNE REACTIONS Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , , , 8.10, 8.12, , 7.1,
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry This For copyright notice see final page of this.
Alcohols: Structure & Synthesis
Chemistry 125: Lecture 60 March 23, 2011 NMR Spectroscopy Chemical Shift and Diamagnetic Anisotropy, Spin-Spin Coupling This For copyright notice see final.
OZONE. OZONE electric discharge or cosmic rays.. : : : EQUIVALENT RESONANCE STRUCTURES
Chemistry 125: Lecture 52 February 16, 2011 Transition Metal Catalysis: Hydrogenation & Polymerization Additions by Radicals & Electrophilic Carbon; Isoprenoids;
Chemistry 125: Lecture 49 February 10, 2010 Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final page.
Chemistry 125: Lecture 68 April 13, 2010 HIO 4 Cleavage; Alcohols Grignard, Wittig Reactions Green Chemistry This For copyright notice see final page of.
Chemistry 125: Lecture 68 April 14, 2010 Mitsunobu Reaction Acids and Acid Derivatives This For copyright notice see final page of this file.
Chemistry 125: Lecture 48 February 8, 2010 Addition to Alkenes a Physical-Organic MO Perspective This For copyright notice see final page of this file.
Chemistry 125: Lecture 69 April 14, 2011 Measuring Bond Energies This For copyright notice see final page of this file.
Chemistry 125: Lecture 53 February 19, 2010 Tuning Polymer Properties. Alkynes, Dienes & Conjugation This For copyright notice see final page of this file.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chemistry 125: Lecture 16 October 9, 2009 Reaction Analogies and Carbonyl Reactivity Comparing the low LUMOs that make both HF and CH 3 F acidic underlines.
Chem 125 Lecture 4/11/07 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed further.
Chemistry 125: Lecture 64 April 7, 2010 Carbonyl Compounds Preliminary This For copyright notice see final page of this file.
Chemistry 125: Lecture 55 February 24, 2010 (4n+2) Aromaticity Cycloaddition Electrocyclic Reactions This For copyright notice see final page of this file.
Chemistry 125: Lecture 44 January 27, 2010 Nucleophilic Substitution and Mechanistic Tools: Rate Law & Rate Constant This For copyright notice see final.
Chemistry 125: Lecture 34 Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes Professor Barry Sharpless of Scripps Research Institute describes.
Chemistry 125: Lecture 43 January 25, 2010 Solvation, Ionophores and Brønsted Acidity This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 9, 2010 Oxidizing/Reducing Reagents Bookeeping & Mechanism This For copyright notice see final page of this file.
Chemistry 125: Lecture 52 February 16, 2011 Transition Metal Catalysis: Hydrogenation & Polymerization Additions by Radicals & Electrophilic Carbon; Isoprenoids;
Chemistry 125: Lecture 73 April 28, 2010 Benzoin, Claisen, Robinson (Ch. 19) Two Un-Natural Products This For copyright notice see final page of this file.
Chemistry 125: Lecture 66 April 6, 2011 Carbonyl Chemistry: Imines & Enamines Oxidation/Reduction & Electron Transfer This For copyright notice see final.
Chemistry 125: Lecture 47 February 5, 2010 Addition to Alkenes a Synthetic Perspective guest lecture by Prof. Jay S. Siegel Universit ä t Zurich This For.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 40 January 15, 2010 Predicting Rate Constants, and Reactivity - Selectivity Relation. Rates of Chain Reactions. This For copyright.
Chapter 18 Ketones and Aldehydes Organic Chemistry, 6 th Edition L. G. Wade, Jr.
Chemistry 125: Lecture 64 April 2, 2010 Carbonyl Compounds Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 65 April 7, 2010 Addition to C=O Mechanism & Equilibrium Protecting Groups Oxidation/Reduction & Electron Transfer This For copyright.
Chemistry 125: Lecture 18 Amide, Carboxylic Acid, and Alkyl Lithium The first half of the semester ends by analyzing three functional groups in terms of.
Chemistry 125: Lecture 67 April 12, 2010 Oxidizing/Reducing Alcohols Grignard Reactions Green Chemistry Preliminary more coming This For copyright notice.
Chemistry 125: Lecture 17 Reaction Analogies and Carbonyl Reactivity In molecular orbital terms there is a close analogy among seemingly disparate organic.
Previous examples of “pathological” bonding and the BH 3 molecule illustrate how a chemist’s use of localized bonds, vacant atomic orbitals, and unshared.
Chemistry 125: Lecture 45 January 29, 2010 Nucleophilic Substitution and Mechanistic Tools: Rate Law, Rate Constant, Structure This For copyright notice.
Chemistry 125: Lecture 57 March 3, 2010 Normal Modes: Mixing and Independence in Infrared Spectroscopy This For copyright notice see final page of this.
Chemistry 125: Lecture 69 April 16, 2010 Decarboxylation (Ch. 17) and Acyl Compounds (Ch. 18) This For copyright notice see final page of this file.
Chemistry 125: Lecture 36 December 7, 2009 Bond Energies Group- or bond-additivity schemes are useful for understanding heats of formation, especially.
Hemiacetals and Acetals, carbonyls and alcohols (Unstable in Acid; Stable in base) (Unstable in Acid; Unstable in base) Addition reaction. Substitution.
Chemistry 125: Lecture 54 February 22, 2010 Linear and Cyclic Conjugation Allylic Intermediates (4n+2) Aromaticity This For copyright notice see final.
Chemistry 125: Lecture 67 April 11, 2011 Triphenylmethyl Spectra Friedel-Crafts Revisited Oxidizing/Reducing Scheme Alcohol Oxidation Mechanism This For.
Chemistry 125: Lecture 50 February 12, 2010 More Electrophilic Addition to Alkenes with Nucleophilic Participation This For copyright notice see final.
Chemistry 125: Lecture 71 April 21, 2010  -H Reactivity (Ch. 19) A Few Topics in Carbohydrate Chemistry (Ch. 22) Preliminary This For copyright notice.
Chemistry 125: Lecture 64 April 1, 2011 Triphenylmethyl Carbonyl Compounds: Overview This For copyright notice see final page of this file.
Chemistry 125: Lecture 62 March 29, 2010 Electrophilic Aromatic Substitution This For copyright notice see final page of this file.
Chapter 8 Reactions of Alkenes
Chemistry 125: Lecture 60 March 24, 2010 NMR Spectroscopy Isotropic J and Dynamics This For copyright notice see final page of this file.
Chemistry 125: Lecture 65 April 4, 2011 Addition to C=O Mechanism & Equilibrium Protecting Groups Imines This For copyright notice see final page of this.
Chemistry 125: Lecture 56 February 25, 2011 Generalized Aromaticity Cycloaddition – Diels-Alder Electrocyclic Stereochemistry Dewar Benzene This For copyright.

Chapter 15 Alcohols, Diols, and Thiols Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
7. Alkenes: Reactions and Synthesis Based on McMurry’s Organic Chemistry, 6 th edition.
Chemistry 125: Lecture 71 April 20, 2011 Acids and Acid Derivatives Decarboxylation (J&F Ch. 17) Acyl Compounds (J&F Ch. 18) This For copyright notice.
Chemistry 125: Lecture 50 February 11, 2011 Electrophilic Addition with Nucleophilic Participation Cycloaddition Epoxides This For copyright notice see.
IV. Oxidation Three types A. Epoxidation B. Hydroxylation C. Oxidative cleavage.
This year’s Nobel Prizes in Physics and Chemistry tie in nicely to the subjects of our course, including today’s lecture. Examining the BH 3 molecule illustrates.
Chemistry 125: Lecture 17 October 8, 2010 Carbonyl, Amide, Carboxylic Acid, and Alkyl Lithium The first “half” of the semester ends by analyzing four functional.
Chemistry 125: Lecture 48 February 7, 2011 Alkenes: Stability and Addition Mechanisms Electrophilic Addition This For copyright notice see final page of.
Mitsunobu Reaction Acids and Acid Derivatives
Condensations (J&F Ch. 19) Fischer’s Glucose Proof - Introduction
Chemistry 125: Lecture 51 February 14, 2011 Cycloaddition Epoxides Ozonolysis & Acetals CH 3 Li + O=CH 2 Analogy OsO 4 This For copyright notice see final.
Chapter 15 Alcohols, Diols, and Thiols Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chem 125 Lecture 72 4/24/08 Projected material This material is for the exclusive use of Chem 125 students at Yale and may not be copied or distributed.
Chemistry 125: Lecture 49 February 9, 2011 Electrophilic Addition with Nucleophilic Participation This For copyright notice see final page of this file.
Chemistry 125: Lecture 18 Amide, Carboxylic Acid, and Alkyl Lithium
Imines & Enamines Oxidation/Reduction & Electron Transfer
Friedel-Crafts Revisited Oxidizing/Reducing Scheme
Acyl Insertions (J&F Ch. 18)
HBr Addition to Alkenes and its “Regiochemistry”
Presentation transcript:

Chemistry 125: Lecture 51 February 15, 2010 More Addition to Alkenes: Organometallic Reagents and Catalysts This For copyright notice see final page of this file

Mechanism for Acid-Catalyzed Hydrolysis of Acetal RO CH 2 + H HOH : : RO CH 2 + HROH RO-CH 2 + HO RO CH 2 + H First remove RO, and replace it by HO. HO RO CH 2 Now remove second RO, then H (from HO) + H : HO RO CH 2 + H RO=CH 2 + cation unusually stable; thus easily formed ROH H-O-CH 2 + O=CH 2 ROH RO CH 2 O H H  : Overall Transformation: H 2 O + Acetal Carbonyl + 2 ROH H+H+ (pp ) (hemiacetal) ? ? SN1SN1 E1

HOHO O=CH 2 CH 2 HO-O O H H O-O O H2CH2C O H H H H H 2 C=O Ozonide is a Double Acetal So Double Hydrolysis and hydrogen peroxide Gives Two Carbonyl Compounds which oxidizes aldehydes to carboxylic acids!

Sec. 10.5b pp Add a reducing agent like (CH 3 ) 2 S (or Zn) to destroy HOOH and save RCH=O. Or go with the flow and add more HOOH to obtain a good yield of RCOOH.

3-membered ring with O-O bond is even worse. What Happens to HOOH + RCHO? O C H R O OH - O C H R O - O C H R O - HOH - O CR O R B R R O OH - Cf. Problem: Try drawing an analogous acid-catalyzed mechanism in which HOOH attacks the protonated carbonyl, then H + is lost from one O of the HOOH fragment in the product and added to the other before rearrangement. OH OH - is a bad leaving group from C, but O-O bond is very weak. Hydride Shift

“Nucleophilic” Addition to C=O

The nucleophilic addition of methyl lithium to carbonyl groups* is formally quite different from these additions of electrophiles to alkenes, but the following transition state analysis reveals a marked mechanistic similarity. * which will be discussed in more detail later.

Transition State Motion Li-CH 3 O=CH 2 Li CH 3 O CH 2

Transition State Orbital Mixing Li-CH 3 O=CH 2 HOMOLUMO+2  * LUMO  HOMO

Orbital Variety from Metals

overlaps with alkene  *overlaps with alkene  LUMOHOMO OsO 4 / Permanganate Sec. 10.5c p. 443 Os or Mn - Os analogue of cyclic acetal H2OH2O Diol + O 2 Os=O OsO 4 is poisonous and expen$ive! Use as a 1% catalyst by adding oxidant. H 2 O 2 (1936) “NMO” (1976) Chiral Amine Ligand Sharpless (1988) R R R R

H  * LUMO  HOMO orthogonal Sections 10.2a ( ), (452) Catalytic Hydrogenation HOMO/LUMO : Concerted H  * LUMO  HOMO CC H CC H H CCCC  * LUMO  HOMO (“works” with Pt/C Catalyst! Sec 4.9A, 168ff ) HOMO-HOMO repulsive empty Pd

HOMO (4d) Ethylene LUMO (   ) HOMO (  ) HOMO-4 Ethylene-Pd Complex …(4d) 10 (5s) 0 (5p) 0 13%   40% 4d xy 47%  C-H

HOMO (  ) Pd HOMO (4d) Ethylene UMO ( 5s ) UMO ( 5p ) (4d) 10 (5s) 0 (5p) 0 HOMO Ethylene-Pd Complex + 6% 5s 5% 5p 15% 4d z 2 67% 

Sigma Bond Analogue “Oxidative” Insertion (crummy PM3 calculation) H-H + Pd kcal/mole H 2 dissociates on bulk Pd surface (and moves and dissolves) (entropy help)

H Catalytic Hydrogenation  “ oxidative insertion”  “ oxidative insertion” Pd CC C C HH H H “ reductive elimination” Pd H CC H C C H C C H H C C H Pd addition concerted; H replaces Pd twice  syn addition

Catalytic Hydrogenation Stereochemistry syn addition (p. 412)

Stereochemistry (Loudon, Sec. 7.9 E p. 313 ) No yields specified! No literature reference!

pp of H. O. House Modern Synthetic Chemistry (1972)

J. Chem. Soc., 1354 (1948) H 2 / Pt R’ = Ac

H Catalytic Hydrogenation Pd H H C C H C C H H C C H C C C C H HH H C C C H H C C C H H C C C H CC alkene isomerized

?? VIIVIII

Alkene Metathesis   CC Grubbs Catalyst Ru C C C C C C C C C C C C C Nobel Prize 2005

Tall Fred Ziegler (not Karl Ziegler) with Robt. Grubbs Tourists Ziegler Grubbs Host

ROMP Ring-Opening Metathesis Polymerization Ru C C C n n metathesis metatheses

Catalytic Hydrogenation Ti R CC R C C R C C H Pd H C C H C C H C C H H C C H 25 x 10 6 tons (2004) -(CH 2 -CH 2 ) n - n = Ziegler-Natta Polymerization 45 x 10 6 tons (2007) -(CH 2 -CH) n - CH 3 n up to 10 5 isotactic All head-to-tail, but stereorandom (atactic)All head-to-tail, and stereoregular (isotactic)

End of Lecture 51 Feb. 15, 2010 Copyright © J. M. McBride Some rights reserved. Except for cited third-party materials, and those used by visiting speakers, all content is licensed under a Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0).Creative Commons License (Attribution-NonCommercial-ShareAlike 3.0) Use of this content constitutes your acceptance of the noted license and the terms and conditions of use. Materials from Wikimedia Commons are denoted by the symbol. Third party materials may be subject to additional intellectual property notices, information, or restrictions. The following attribution may be used when reusing material that is not identified as third-party content: J. M. McBride, Chem 125. License: Creative Commons BY-NC-SA 3.0