Modeling of curves Needs a ways of representing curves: Reproducible - the representation should give the same curve every time; Computationally Quick;

Slides:



Advertisements
Similar presentations
Lecture 14 Curves and Surfaces II
Advertisements

Lecture Notes #11 Curves and Surfaces II
Computer Graphics (Spring 2008) COMS 4160, Lecture 6: Curves 1
Lecture 10 Curves and Surfaces I
© University of Wisconsin, CS559 Spring 2004
Jehee Lee Seoul National University
1 Introduction Curve Modelling Jack van Wijk TU Eindhoven.
Dr. S.M. Malaek Assistant: M. Younesi
1 Curves and Surfaces. 2 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized.
Curves Chiew-Lan Tai.
Rational Bezier Curves
09/04/02 Dinesh Manocha, COMP258 Bezier Curves Interpolating curve Polynomial or rational parametrization using Bernstein basis functions Use of control.
Modelling. Outline  Modelling methods  Editing models – adding detail  Polygonal models  Representing curves  Patched surfaces.
1 Lecture 13 Modeling Curved Lines and Surfaces. 2 Types of Surfaces Ruled Surfaces B-Splines and Bezier Curves Surfaces of Revolution.
1 Dr. Scott Schaefer The Bernstein Basis and Bezier Curves.
Geometric Modeling Surfaces Mortenson Chapter 6 and Angel Chapter 9.
Cubic Bezier and B-Spline Curves
Curves Mortenson Chapter 2-5 and Angel Chapter 9
Bezier and Spline Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
Modelling: Curves Week 11, Wed Mar 23
RASTER CONVERSION ALGORITHMS FOR CURVES: 2D SPLINES 2D Splines - Bézier curves - Spline curves.
University of British Columbia CPSC 414 Computer Graphics © Tamara Munzner 1 Curves Week 13, Mon 24 Nov 2003.
Bezier and Spline Curves and Surfaces CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
COEN Computer Graphics I
Curve Surfaces June 4, Examples of Curve Surfaces Spheres The body of a car Almost everything in nature.
Splines III – Bézier Curves
Curves and Surfaces (cont’) Amy Zhang. Conversion between Representations  Example: Convert a curve from a cubic B-spline curve to the Bézier form:
Curve Modeling Bézier Curves
Bresenham’s Algorithm. Line Drawing Reference: Edward Angel’s book: –6 th Ed. Sections 6.8 and 6.9 Assuming: –Clipped (to fall within the window) –2D.
11/19/02 (c) 2002, University of Wisconsin, CS 559 Last Time Many, many modeling techniques –Polygon meshes –Parametric instancing –Hierarchical modeling.
Curve Modeling B-Spline Curves
(Spline, Bezier, B-Spline)
V. Space Curves Types of curves Explicit Implicit Parametric.
Introduction to Computer Graphics with WebGL
CS 445 / 645 Introduction to Computer Graphics Lecture 23 Bézier Curves Lecture 23 Bézier Curves.
1 Dr. Scott Schaefer Smooth Curves. 2/109 Smooth Curves Interpolation  Interpolation through Linear Algebra  Lagrange interpolation Bezier curves B-spline.
Review of Interpolation. A method of constructing a function that crosses through a discrete set of known data points.
Bézier Algorithms & Properties Glenn G. Chappell U. of Alaska Fairbanks CS 481/681 Lecture Notes Wednesday, March 3, 2004.
Quadratic Surfaces. SPLINE REPRESENTATIONS a spline is a flexible strip used to produce a smooth curve through a designated set of points. We.
INTERPOLATION & APPROXIMATION. Curve algorithm General curve shape may be generated using method of –Interpolation (also known as curve fitting) Curve.
CS 445/645 Fall 2001 Splines/Film/Animation. Final Exam Thursday, December 13 th from 7 – 10 p.m. –Room Olsson 011 You may use one sheet of notes (8.5.
Splines IV – B-spline Curves based on: Michael Gleicher: Curves, chapter 15 in Fundamentals of Computer Graphics, 3 rd ed. (Shirley & Marschner) Slides.
Parametric Surfaces Define points on the surface in terms of two parameters Simplest case: bilinear interpolation s t s x(s,t)x(s,t) P 0,0 P 1,0 P 1,1.
Keyframing and Splines Jehee Lee Seoul National University.
CS 376 Introduction to Computer Graphics 04 / 25 / 2007 Instructor: Michael Eckmann.
Representation of Curves & Surfaces Prof. Lizhuang Ma Shanghai Jiao Tong University.
04/18/02(c) 2002 University of Wisconsin Last Time Hermite Curves Bezier Curves.
Curves: ch 4 of McConnell General problem with constructing curves: how to create curves that are “smooth” CAD problem Curves could be composed of segments.
(c) 2002 University of Wisconsin
Slide 129 October 1999CS Computer Graphics (Top Changwatchai) Bézier Curves - Results of Derivation Tangents at endpoints are equal to endpoint slopes.
Splines Sang Il Park Sejong University. Particle Motion A curve in 3-dimensional space World coordinates.
Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 12: Curves 1
Rendering Bezier Curves (1) Evaluate the curve at a fixed set of parameter values and join the points with straight lines Advantage: Very simple Disadvantages:
Curves University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Tamara Munzner.
CS552: Computer Graphics Lecture 19: Bezier Curves.
Object Modeling: Curves and Surfaces CEng 477 Introduction to Computer Graphics.
Introduction to Parametric Curve and Surface Modeling.
© University of Wisconsin, CS559 Spring 2004
CS5500 Computer Graphics May 11, 2006
Curve & Surface.
Representation of Curves & Surfaces
CS 445 / 645 Introduction to Computer Graphics
(Spline, Bezier, B-Spline)
Chapter 10-2: Curves.
CSE 167 [Win 17], Lecture 9: Curves 1 Ravi Ramamoorthi
© University of Wisconsin, CS559 Spring 2004
Parametric Line equations
Three-Dimensional Object Representation
Lecture 21: B Spline Curve
Introduction to Parametric Curve and Surface Modeling
Presentation transcript:

Modeling of curves Needs a ways of representing curves: Reproducible - the representation should give the same curve every time; Computationally Quick; Easy to manipulate, especially important for design purposes; Flexible; Easy to combine with other segments of curve.

Bezier curve model

Bezier Curve

Bezier Curve from six points

Patching two Bezier Curves Together

Calculation of Bezier curves Lets Р 0 =[1,1] Р1=[2,3] Р2=[4,3] P3=[3,1]

The coefficients of Bezier curve tI 3,0 I 3,1 I 3,2 I 3,

The values of the points on the curve

Points of polygon and calculated Bezier curve

The properties of Bezier curves: The curve passes through the start and finish points of the control polygon defining the curve. The tangent to the curve at t = 0 lies in the direction of the line joining the first point to the second point. Also the tangent to the curve at t=1 is in the direction of the line joining the penultimate point to the last point. Any point on the curve lies inside the convex hull of the control polygon. Also moving any control point will drag the curve towards that control point. It can also be proved that any line/plane intersects the curve no more times than it intersects the open polygon formed by the control points. This means that no line can intersect the curve more than twice if the four control points form an open polygon as shown. Thus there can be no loops in the curve and it must be smooth. This is called the Variation Diminishing Property.

Disadvantages of Bezier curves Their non-localness. Thus while a particular control point mainly influences the shape of the curve close to it, it also affects the entire curve to some extent. The fact that the degree of the curve is related to the number of control points. Thus either high order polynomials have to be evaluated or multiple low-degree curve segments have to be used.

B-spline basis functions

Iterations scheme for cubic (k = 4) basis functions

Knot vectors Knot vectors are generally: uniform, open uniform and non-uniform. Uniform knot vectors are the vectors for which ti+1 - ti = const, e.g. [0,1,2,3,4,5]. Open Uniform knot vectors are uniform knot vectors which have k-equal knot values at each end: ti = t0, i < k ti+1 - ti = const, k-1 <= i < n+1 ti = tk+n, i >= n+1 e.g. [0,0,0,1,2,3,4,4,4] (k=3, n=5). Non-uniform knot vectors. This is the general case, the only constraint is the standard ti <= ti+1

B-spline curve

B-spline through 4 control points, with degree t = 2, 3, and 4. t = 2 is just linear interpolation, as the degree increases the smoother the curve becomes

Effect of the degree of B-spline curve on its shape

Multiple control points induce regions of high curvature of a B- spline curve

Advantages of B-splines Changes to a control point only affects the curve in that locality Any number of points can be added without increasing the degree of the polynomial. As with Bezier curves adding multiple points at or near a single position draws the curve towards that position. Closed curves can be created by making the first and last points the same, although continuity will not be maintained automatically. B-Splines lie in the convex hull of the control points