CME-driven Shocks in White Light Observations SOHO/LASCO C3 – CME May 5 th, 1999 CME-driven Shock We demonstrate that CME-driven shocks: (1) can be detected.

Slides:



Advertisements
Similar presentations
Global Properties of Heliospheric Disturbances Observed by Interplanetary Scintillation M. Tokumaru, M. Kojima, K. Fujiki, and M. Yamashita (Solar-Terrestrial.
Advertisements

Hot Precursor Ejecta and Other Peculiarities of the 2012 May 17 Ground Level Enhancement Event N. Gopalswamy 2, H. Xie 1,2, N. V. Nitta 3, I. Usoskin 4,
MHD modeling of coronal disturbances related to CME lift-off J. Pomoell 1, R. Vainio 1, S. Pohjolainen 2 1 Department of Physics, University of Helsinki.
ICMEs and Magnetic Clouds Session Summary Charlie Farrugia and Lan Jian.
Coronal Mass Ejections without photospheric/chromospheric signatures Session organizers: Alexei Pevtsov (NSO) and Vasyl Yurchyshyn (BBSO) Discussion leaders:
CAS Key Laboratory of Geospace Environment, USTC The Deflection of 2008 September 13 CME in Heliosphere Space ISEST, Hvar, Croatia,2013 June 17 Collaborators:
Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
Reviewing the Summer School Solar Labs Nicholas Gross.
Strength of Coronal Mass Ejection- driven Shocks Near the Sun and Its Importance in Predicting Solar Energetic Particle Events Chenglong Shen 1, Yuming.
M. J. Reiner, 1 st STEREO Workshop, March, 2002, Paris.
Coronal Loop Oscillations and Flare Shock Waves H. S. Hudson (UCB/SSL) & A. Warmuth (Astrophysical Institute Potsdam) Coronal loop oscillations: introduction.
E. Robbrecht – SIDC- Royal Observatory of Belgium 8 March 2007 The statistical importance of narrow CMEs Open questions to be addressed by SECCHI Eva Robbrecht,
Heliospheric MHD Modeling of the May 12, 1997 Event MURI Meeting, UCB/SSL, Berkeley, CA, March 1-3, 2004 Dusan Odstrcil University of Colorado/CIRES &
A General Cone Model Approach to Heliospheric CMEs and SEP Modeling Magnetogram-based quiet corona and solar wind model The SEPs are modeled as a passive.
1 Determination of 3D CME Trajectories using Stereoscopy Paulett Liewer, Jeff Hall, Eric DeJong, JPL Vahab Pournaghsband, UCB Arnaud Thernisien and Russ.
Coronal IP Shocks Nat Gopalswamy NASA/GSFC Elmau CME Workshop, 2003 February 7 Plenary talk Sun Earth.
C. May 12, 1997 Interplanetary Event. Ambient Solar Wind Models SAIC 3-D MHD steady state coronal model based on photospheric field maps CU/CIRES-NOAA/SEC.
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
IGPP, March Coronal shock waves observed in images H.S. Hudson SSL/UCB.
Why does the temperature of the Sun’s atmosphere increase with height? Evidence strongly suggests that magnetic waves carry energy into the chromosphere.
Coronal Loop Oscillations and Flare Shock Waves H. S. Hudson (UCB/SSL) & A. Warmuth (Astrophysical Institute Potsdam) Coronal loop oscillations: (Fig.
Identifying Interplanetary Shock Parameters in Heliospheric MHD Simulation Results S. A. Ledvina 1, D. Odstrcil 2 and J. G. Luhmann 1 1.Space Sciences.
C. May 12, 1997 Interplanetary Event. May 12, 1997 Interplanetary Coronal Mass Ejection Event CU/CIRES, NOAA/SEC, SAIC, Stanford Tatranska Lomnica, Slovakia,
Coronal and Heliospheric Modeling of the May 12, 1997 MURI Event MURI Project Review, NASA/GSFC, MD, August 5-6, 2003 Dusan Odstrcil University of Colorado/CIRES.
Influence of Time-dependent Processes and Background Magnetic Field on Shock Properties N. Lugaz, I. Roussev and C. Downs Institute for Astronomy Igor.
RT Modelling of CMEs Using WSA- ENLIL Cone Model
High-Cadence EUV Imaging, Radio, and In-Situ Observations of Coronal Shocks and Energetic Particles: Implications for Particle Acceleration K. A. Kozarev.
Shock wave formation heights using 2D density and Alfvén maps of the corona ABSTRACT Coronal shock waves can produce decametric radio emission known Type.
1 Interpreting SECCHI White Light Images: FOV Sensitivity & Stereo Viewing Paulett Liewer, JPL; Russ Howard & Dennis Socker, NRL SECCHI Consortium Meeting.
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
1 C. “Nick” Arge Space Vehicles Directorate/Air Force Research Laboratory SHINE Workshop Aug. 2, 2007 Comparing the Observed and Modeled Global Heliospheric.
Modeling Coronal Acceleration of Solar Energetic Protons K. A. Kozarev, R. M. Evans, N. A. Schwadron, M. A. Dayeh, M. Opher, K. E. Korreck NESSC Meeting,
Evolution of the 2012 July 12 CME from the Sun to the Earth: Data- Constrained Three-Dimensional MHD Simulations F. Shen 1, C. Shen 2, J. Zhang 3, P. Hess.
Assessing Predictions of CME Time- of-Arrival and 1 AU Speed to Observations Angelos Vourlidas Vourlidas- SHINE
Relation between Type II Bursts and CMEs Inferred from STEREO Observations N. Gopalswamy, W. Thompson, J. Davila, M. Kaiser NASA Goddard Space Flight Center,
1 Determination of CME 3D Trajectories using COR Stereoscopy + Analysis of HI1 CME Tracks P. C. Liewer, E. M. DeJong, J. R. Hall, JPL/Caltech; N. Sheeley,
On the February 14-15, 2011 CME-CME interaction event and consequences for Space Weather Manuela Temmer(1), Astrid Veronig(1), Vanessa Peinhart(1), Bojan.
SHINE SEP Campaign Events: Long-term development of solar corona in build-up to the SEP events of 21 April 2002 and 24 August 2002 A. J. Coyner, D. Alexander,
The Wavelet Packets Equalization Technique: Applications on LASCO Images M.Mierla, R. Schwenn, G. Stenborg.
1 Acceleration and Deceleration of Flare/Coronal Mass Ejection Induced Shocks S.T. Wu 1, C.-C. Wu 2, Aihua Wang 1, and K. Liou 3 1 CSPAR, University of.
Extremely Fast Coronal Mass Ejection on 23 July Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,20723, USA 2 NOAA Space Weather.
1 SPD Meeting, July 8, 2013 Coronal Mass Ejection Plasma Heating by Alfvén Wave Dissipation Rebekah M. Evans 1,2, Merav Opher 3, and Bart van der Holst.
A comparison of CME-associated atmospheric waves observed in coronal (Fe XII 195A) and chromospheric ( He I 10830A) lines Holly R. Gilbert, Thomas E. Holzer,
34th Solar Physics Division Meeting, June 2003 Propagating Disturbances in the Lower Solar Corona Meredith J. Wills-Davey Southwest Research Institute.
-1- Coronal Faraday Rotation of Occulted Radio Signals M. K. Bird Argelander-Institut für Astronomie, Universität Bonn International Colloquium on Scattering.
The Space Weather Week Monique Pick LESIA, Observatoire de Paris November 2006.
ESMP-14 Dublin Li Feng, Bernd Inhester, Yuming Wang, Fang Shen, Chenglong Shen, Weiqun Gan 1. Max Planck Institute for Solar System Research, Germany 2.
Fast Magnetosonic Waves and Global Coronal Seismology in the Extended Solar Corona Ryun Young Kwon, Jie Zhang, Maxim Kramar, Tongjiang Wang, Leon Ofman,
Modeling of CME-driven Shock propagation with ENLIL simulations using flux-rope and cone-model inputs Using observations from STEREO/SECCHI and SOHO/LASCO,
ORIGIN OF THE SLOW SOLAR WIND K. Fujiki , T. Ohmi, M. Kojima, M. Tokumaru Solar-Terrestrial Environment Laboratory, Nagoya University and K. Hakamada Department.
IMAGING AND SPECTOROPIC INVESTIGATIONS OF A SOLAR CORONAL WAVE: PROPERTIES OF THE WAVE FRONT AND ASSOCIATED ERUPTING MATERIAL L OUISE K. HARRA AND A LPHONSE.
Xie – STEREO SWG – Dublin – March 2010 Low Mass Coronal Mass Ejections Missed by STEREO A/B or LASCO and Associated ICMEs H. Xie 1,2, O. C. St. Cyr 2,
Modeling 3-D Solar Wind Structure Lecture 13. Why is a Heliospheric Model Needed? Space weather forecasts require us to know the solar wind that is interacting.
A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation P. MacNeice, S.K. Antiochos, A. Phillips, D.S. Spicer, C.R. DeVore, and K.
Heliospheric Simulations of the SHINE Campaign Events SHINE Workshop, Big Sky, MT, June 27 – July 2, 2004 Dusan Odstrcil 1,2 1 University of Colorado/CIRES,
Data-constrained Simulation of CME Initiation and Propagation Antonia Savcheva ESPM 2014 September 11, 2014 Collaborators: R. Evans, B. van der Holst,
Analysis of 3 and 8 April 2010 Coronal Mass Ejections and their Influence on the Earth Magnetic Field Marilena Mierla and SECCHI teams at ROB, USO and.
Shocks in the IPS Wageesh Mishra Eun-kyung Joo Shih-pin Chen.
Solar Origins of the October November 2003 Extreme Events N. Gopalswamy NASA/GSFC SHINE 2004 WG3 Thursday, June 1 Big Sky, Montana Photo.
State of NOAA-SEC/CIRES STEREO Heliospheric Models STEREO SWG Meeting, NOAA/SEC, Boulder, CO, March 22, 2004 Dusan Odstrcil University of Colorado/CIRES.
1 Determination of CME 3D Trajectories using Stereoscopy STEREO CMES of 16Nov2007 and 31AUG2007 P. C. Liewer, E. M. DeJong, J. R. Hall, JPL/Caltech; R.
3D Morphology of CME-driven Shocks (work in progress) V. Ontiveros, A. Vourlidas, A. Thernisien.
Detecting, forecasting and modeling of the 2002/04/17 halo CME Heliophysics Summer School 1.
CME-driven Shocks in White Light Observations Verónica Ontiveros National University of Mexico, MEXICO George Mason University,USA Angelos Vourlidas Naval.
An Introduction to Observing Coronal Mass Ejections
On the three-dimensional configuration of coronal mass ejections
ICME in the Solar Wind from STEL IPS Observations
Miho Janvier (IAS) & Ben Lynch (UCB)
Particle Acceleration at Coronal Shocks: the Effect of Large-scale Streamer-like Magnetic Field Structures Fan Guo (Los Alamos National Lab), Xiangliang.
High-cadence Radio Observations of an EIT Wave
Presentation transcript:

CME-driven Shocks in White Light Observations SOHO/LASCO C3 – CME May 5 th, 1999 CME-driven Shock We demonstrate that CME-driven shocks: (1) can be detected in white light coronagraph images. (2) can have some of their properties measured (i.e., shock strength). (3) their propagation direction can be deduced via simple modeling.

How does a shock wave look like in a white light image? STREAMER DEFLECTION PILED UP MATERIAL ? Events between The overall morphology of the white light corona is simple. ALL FAST CMEs V>1500 km/s Events that will be good candidates to drive a shock. Our Data

Quantifying Ontiveros & Vourlidas, 2008, ApJ Submitted

Quantifying G1G2 G3 Image measurement Image measurement Image measurement ?

Quantifying

Results Kinetic Energy CC=0.7 Momentum CC=0.8 Speed high enough to create a shock, but not the best correlated parameter

Results WHERE IS EASIER TO OBSERVE THE SHOCK SIGNATURE? 15 degrees above or below the Solar Equator streamers make difficult the shock observation

Slides courtesy of A. Thernisien

Bow-shock model (Smith et al 2003)

Solar Corona Raytrace Simulated white light images for a bow-shock model observed through different lines of sight. (a) Along the Sun-Earth line (b) 10◦ west (c) 90 ◦ south (d) 45◦ west, 45◦south

Solar Corona Raytrace Comparison of Modeled Shock Orientation and CME Source Regions event shock nose source region S13W56 S18W N47W138 N43W S38W108 S26W134 Discrepancy latitude <12 deg longitude < 31 deg Ontiveros & Vourlidas, 2008, ApJ Submitted

Summary and Conclusions 13/15 of these events exhibited a sharp but faint brightness enhancement ahead or at the flanks of the CME over a large area, which we interpret as the white light counterpart of the CME-driven shock. All halo CMEs (10 events) have at least one location with such a shock signature. This is consistent with a shock draping all around the CME driver. The clearest white light signatures were found 15 deg above or below the solar equator, irrespective of heliocentric distance.

We found only a weak dependence between the shock strength (γ) and the CME speed. We found stronger correlations between the density jump and the kinetic energy (cc=0.77) and between density jump and the momentum (cc=0.80). The observed density profiles are the result of line-of-sight integration through a thin shock and sheath and not with a step jump as the observed shocks from in-situ measurements. We also found that our modeled 3D shock direction is in very good agreement with the expected direction of the CME assuming radial propagation from the source region. Summary and Conclusions

Future Directions Coronal Alfvén speed maps (w/ Riley) Forward-model fitting of both CME (driver) and shock Investigate spatial relation between shock/source region

CME speed > alfven speed Necessary condition Not enough for WL images Alfven Speed 1-20 Rs MAS code (Riley, et al., 2006) 3D time-dependent MHD model SOHO/LASCO C3 – CME May 5 th, 1999 Where?

Localizing the source of the CME COR2B COR2A EUVI Thernisien et al, work in progress