Breadth-First Search1 Part-H3 Breadth-First Search CB A E D L0L0 L1L1 F L2L2.

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Depth-First Search1 DB A C E.
Advertisements

© 2010 Goodrich, Tamassia Graphs1 Graph Data Structures ORD DFW SFO LAX
Depth-First Search1 Part-H2 Depth-First Search DB A C E.
© 2004 Goodrich, Tamassia Breadth-First Search1 CB A E D L0L0 L1L1 F L2L2.
Graph Traversals Visit vertices of a graph G to determine some property: Is G connected? Is there a path from vertex a to vertex b? Does G have a cycle?
Breadth-First Search Seminar – Networking Algorithms CS and EE Dept. Lulea University of Technology 27 Jan Mohammad Reza Akhavan.
Depth-First Search1 DB A C E. 2 Outline and Reading Definitions (§6.1) Subgraph Connectivity Spanning trees and forests Depth-first search (§6.3.1) Algorithm.
© 2004 Goodrich, Tamassia Directed Graphs1 JFK BOS MIA ORD LAX DFW SFO.
© 2004 Goodrich, Tamassia Depth-First Search1 DB A C E.
1 Directed Graphs CSC401 – Analysis of Algorithms Lecture Notes 15 Directed Graphs Objectives: Introduce directed graphs and weighted graphs Present algorithms.
Graph Traversals CSC 172 SPRING 2002 LECTURE 26. Traversing graphs Depth-First Search like a post-order traversal of a tree Breath-First Search Less like.
1 Graphs: Concepts, Representation, and Traversal CSC401 – Analysis of Algorithms Lecture Notes 13 Graphs: Concepts, Representation, and Traversal Objectives:
Directed Graphs1 JFK BOS MIA ORD LAX DFW SFO. Directed Graphs2 Outline and Reading (§6.4) Reachability (§6.4.1) Directed DFS Strong connectivity Transitive.
© 2004 Goodrich, Tamassia Trees1 Lecture 5 Graphs Topics Graphs ( 圖 ) Depth First Search ( 深先搜尋 ) Breast First Search ( 寬先搜尋 )
CSC311: Data Structures 1 Chapter 13: Graphs I Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
Minimum Spanning Trees
1 Graph Algorithms Lecture 09 Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program, Image and Vision Computing Lab. School of Information and Computer Technology.
CSC 213 – Large Scale Programming. Today’s Goals  Make Britney sad through my color choices  Revisit issue of graph terminology and usage  Subgraphs,
Graphs Part 1. Outline and Reading Graphs (§13.1) – Definition – Applications – Terminology – Properties – ADT Data structures for graphs (§13.2) – Edge.
October 22, DFS, BFS, Biconnectivity, Digraphs 1 CS 221 West Virginia University.
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Chapter 6 Graphs ORD DFW SFO LAX
Graphs 4/23/2017 9:15 PM Graphs Last Update: Dec 4, 2014 Graphs.
1 Applications of BFS and DFS CSE 2011 Winter May 2016.
GRAPHS 1. Outline 2  Undirected Graphs and Directed Graphs  Depth-First Search  Breadth-First Search.
1 prepared from lecture material © 2004 Goodrich & Tamassia COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING This material.
October 21, Graphs1 Graphs CS 221 (slides from textbook author)
Depth-First Search1 DB A C E. 2 Depth-first search (DFS) is a general technique for traversing a graph A DFS traversal of a graph G – Visits all the vertices.
1 Subgraphs A subgraph S of a graph G is a graph such that The vertices of S are a subset of the vertices of G The edges of S are a subset of the edges.
Depth-First Search Lecture 21: Graph Traversals
CSC401: Analysis of Algorithms 6-1 CSC401 – Analysis of Algorithms Chapter 6 Graphs Objectives: Introduce graphs and data structures Discuss the graph.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
CSC 213 – Large Scale Programming Lecture 31: Graph Traversals.
1 COMP9024: Data Structures and Algorithms Week Eleven: Graphs (I) Hui Wu Session 1, 2016
Directed Graphs1 JFK BOS MIA ORD LAX DFW SFO. Directed Graphs2 Outline and Reading (§12.4) Reachability (§12.4.1) Directed DFS Strong connectivity Transitive.
© 2010 Goodrich, Tamassia Breadth-First Search1 CB A E D L0L0 L1L1 F L2L2.
Graphs ORD SFO LAX DFW Graphs 1 Graphs Graphs
Breadth-First Search L0 L1 L2
Graphs – Breadth First Search
Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Directed Graphs Directed Graphs Shortest Path 12/7/2017 7:10 AM BOS
Searching Graphs ORD SFO LAX DFW Spring 2007
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search L0 L1 L2
COMP9024: Data Structures and Algorithms
COMP9024: Data Structures and Algorithms
Chapter 14 Graph Algorithms
Graphs Part 1.
Graphs.
Graphs.
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Depth-First Search D B A C E Depth-First Search Depth-First Search
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search (BFS)
Depth-First Search D B A C E Depth-First Search Depth-First Search
Elementary Graph Algorithms
Depth-First Search D B A C E Depth-First Search Depth-First Search
Graphs ORD SFO LAX DFW Graphs Graphs
Subgraphs, Connected Components, Spanning Trees
Depth-First Search D B A C E Depth-First Search Depth-First Search
Searching Graphs ORD SFO LAX DFW Spring 2007
Graphs Part 1 ORD SFO LAX DFW
Copyright © Aiman Hanna All rights reserved
Depth-First Search D B A C E 4/13/2019 5:23 AM Depth-First Search
Breadth-First Search L0 L1 L2 C B A E D F Breadth-First Search
Breadth-First Search L0 L1 L2 C B A E D F 4/25/2019 3:12 AM
Applications of BFS CSE 2011 Winter /17/2019 7:03 AM.
Breadth-First Search L0 L1 L2 C B A E D F 5/14/ :22 AM
Breadth-First Search L0 L1 L2 C B A E D F 7/28/2019 1:03 PM
Presentation transcript:

Breadth-First Search1 Part-H3 Breadth-First Search CB A E D L0L0 L1L1 F L2L2

Breadth-First Search2 Breadth-First Search (§ ) Breadth-first search (BFS) is a general technique for traversing a graph A BFS traversal of a graph G Visits all the vertices and edges of G Determines whether G is connected Computes the connected components of G Computes a spanning forest of G BFS on a graph with n vertices and m edges takes O(n  m) time BFS can be further extended to solve other graph problems Find and report a path with the minimum number of edges between two given vertices Find a simple cycle, if there is one

Breadth-First Search3 BFS Algorithm The algorithm uses a mechanism for setting and getting “labels” of vertices and edges Algorithm BFS(G, s) L 0  new empty sequence L 0.insertLast(s) setLabel(s, VISITED ) i  0 while  L i.isEmpty() L i  1  new empty sequence for all v  L i.elements() for all e  G.incidentEdges(v) if getLabel(e)  UNEXPLORED w  opposite(v,e) if getLabel(w)  UNEXPLORED setLabel(e, DISCOVERY ) setLabel(w, VISITED ) L i  1.insertLast(w) else setLabel(e, CROSS ) i  i  1 Algorithm BFS(G) Input graph G Output labeling of the edges and partition of the vertices of G for all u  G.vertices() setLabel(u, UNEXPLORED ) for all e  G.edges() setLabel(e, UNEXPLORED ) for all v  G.vertices() if getLabel(v)  UNEXPLORED BFS(G, v)

Breadth-First Search4 Example C B A E D discovery edge cross edge A visited vertex A unexplored vertex unexplored edge L0L0 L1L1 F CB A E D L0L0 L1L1 F CB A E D L0L0 L1L1 F

Breadth-First Search5 Example (cont.) CB A E D L0L0 L1L1 F CB A E D L0L0 L1L1 F L2L2 CB A E D L0L0 L1L1 F L2L2 CB A E D L0L0 L1L1 F L2L2

Breadth-First Search6 Example (cont.) CB A E D L0L0 L1L1 F L2L2 CB A E D L0L0 L1L1 F L2L2 CB A E D L0L0 L1L1 F L2L2

Breadth-First Search7 Properties Notation G s : connected component of s Property 1 BFS(G, s) visits all the vertices and edges of G s Property 2 The discovery edges labeled by BFS(G, s) form a spanning tree T s of G s Property 3 For each vertex v in L i The path of T s from s to v has i edges Every path from s to v in G s has at least i edges CB A E D L0L0 L1L1 F L2L2 CB A E D F

Breadth-First Search8 Analysis Setting/getting a vertex/edge label takes O(1) time Each vertex is labeled twice once as UNEXPLORED once as VISITED Each edge is labeled twice once as UNEXPLORED once as DISCOVERY or CROSS Each vertex is inserted once into a sequence L i Method incidentEdges is called once for each vertex BFS runs in O(n  m) time provided the graph is represented by the adjacency list structure Recall that  v deg(v)  2m

Breadth-First Search9 Applications Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n  m) time Compute the connected components of G Compute a spanning forest of G Find a simple cycle in G, or report that G is a forest Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

Breadth-First Search10 DFS vs. BFS CB A E D L0L0 L1L1 F L2L2 CB A E D F DFSBFS ApplicationsDFSBFS Spanning forest, connected components, paths, cycles  Shortest paths  Biconnected components 

Breadth-First Search11 DFS vs. BFS (cont.) Back edge (v,w) w is an ancestor of v in the tree of discovery edges Cross edge (v,w) w is in the same level as v or in the next level in the tree of discovery edges CB A E D L0L0 L1L1 F L2L2 CB A E D F DFSBFS