Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO (extended version for 11 Oct 2007)

Slides:



Advertisements
Similar presentations
The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
Advertisements

THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.
L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
COSPAR E July 22, Paris revised for Nobeyama Symposium 2004 October 29, Kiyosato Takeo Kosugi (ISAS/JAXA, Japan)
Transition Region Redshifts in Quiet Sun, Coronal Hole, and Active Region Ingolf E. Dammasch Solar Influences Data Analysis Center, Royal Observatory of.
Initial Results of EIS Shinsuke Imada (NAOJ) EIS Team.
Coronal Responses to Explosive Events Adria C. Updike Smith College / Harvard-Smithsonian Center for Astrophysics Amy Winebarger and Kathy Reeves, Center.
Chapter 8 The Sun – Our Star.
Hot explosions in the cool solar atmosphere Hardi Peter Max Planck Institute for Solar System Research Göttingen H. Tian, W. Curdt, D. Schmit, D. Innes,
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO.
General Properties Absolute visual magnitude M V = 4.83 Central temperature = 15 million 0 K X = 0.73, Y = 0.25, Z = 0.02 Initial abundances: Age: ~ 4.52.
Estimating the Chromospheric Absorption of Transition Region Moss Emission Bart De Pontieu, Viggo H. Hansteen, Scott W. McIntosh, Spiros Patsourakos.
White-Light Flares: TRACE and RHESSI Observations H. Hudson (UCB), T. Metcalf & J. Wolfson (LMSAL), L. Fletcher & J. Khan (Glasgow)
The EUV spectral irradiance of the Sun from minimum to maximum Giulio Del Zanna Department of Space and Climate Physics University College London Vincenzo.
1 Chromospheric UV oscillations depend on altitude and local magnetic field Noah S. Heller and E.J. Zita, The Evergreen State College, Olympia, WA
Chapter 7 The Sun. Solar Prominence – photo by SOHO spacecraft from the Astronomy Picture of the Day site link.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
Coronal Micro-Events and Doppler Oscillations in Hot Active Region Loops Werner Curdt Max-Planck-Institut für Aeronomie Collaborative effort of: Tong Jiang.
Sunspot Studies in Oslo Nils Brynildsen, Per Maltby, Terje Fredvik and Olav Kjeldseth-Moe Institute of Theoretical Astrophysics University of Oslo.
SDO Project Science Team 1 The Science of SDO. SDO Project Science Team 2 Sensing the Sun from Space  High-resolution Spectroscopy for Helioseismology.
Properties of Prominence Motions Observed in the UV T. A. Kucera (NASA/GSFC) E. Landi (Artep Inc, NRL)
1 Sunspot Studies in Oslo with CDS,SUMER,MDI and TRACE A final report (maybe). Per Maltby NilsBrynildsen Olav Kjeldseth-Moe, Per Maltby, Terje Fredvik.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
PROBA2 a Space Weather Monitor Matthew J West ESWW10 - Nov 2013.
Science drivers for wavelength selection: Quiet Sun and Active regions Hardi Peter Kiepenheuer-Institut Freiburg, Germany Contribution to the discussions.
Observing the Sun. Corona: EUV; X-rays Chromosphere: H , UV, EUV Photosphere: near UV, Visible light, infra-red.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
1 Future solar missions (Based on the summary by R.A. Harrison) S. Kamio
EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.
EUV Spectroscopy. High-resolution solar EUV spectroscopy.
The Sun and the Heliosphere: some basic concepts…
Five years of EUV solar irradiance evolution, from short to long timescales as observed by PROBA2/LYRA I.E. Dammasch, M. Dominique, L. Wauters, A. Katsiyannis,
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
Multi-instrument campaigns to observe the off-limb corona Giulio Del Zanna STFC Adv. Fellow, MSSL/UCL UK V. Andretta 1, G. Poletto 2, Y.-K. Ko 3, L.Teriaca.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
Structure of the Sun: Interior, and Atmosphere CSI 662 / ASTR 769 Lect. 02, January 30 Spring 2007 References: Tascione , P15-P18 Aschwanden ,
Degradation of LYRA on PROBA2 after two years in orbit I. E. Dammasch STCE Workshop Brussels, 03 May 2012 LYRA the Large-Yield Radiometer onboard PROBA2.
Advanced Solar Theory (MT5810) OUTLINE 1.Observational properties of the Sun 2.MHD equations (revision) 3.Induction equation - solutions when R m >1 4.Magnetic.
Four Solar Cycles of Space Instrumentation P. Brekke Pål Brekke ESA Space Science Department NASA/Goddard Space Flight Center The Importance of SUMER for.
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
The redshifted footpoints of coronal loops I.E. Dammasch (1), W. Curdt (2), B.N. Dwivedi (2,3), S. Parenti (1) (1) Royal Observatory of Belgium, Brussels,
Line Profile Characteristics of Solar Explosive Event Bursts Z. Ning et al 2004 A&A 419,1141 Speaker: Jinping Dun.
GLOBAL ASYMMETRY OF THE SUN OBSERVED IN THE EXTREME ULTRAVIOLET RADIATION A. N. Zhukov ¹ ’ ², I. S. Veselovsky ², J.-F. Hochedez ¹, F. Clette ¹, O. A.
Modeling the UV/EUV and its relevance for PROBA2 observations Margit Haberreiter Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center,
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
IMAGING AND SPECTOROPIC INVESTIGATIONS OF A SOLAR CORONAL WAVE: PROPERTIES OF THE WAVE FRONT AND ASSOCIATED ERUPTING MATERIAL L OUISE K. HARRA AND A LPHONSE.
Studying Magnetic Reconnection through Explosive Events in the Sun Hannah Alpert.
Sunspot Telescope Sunspots and surface granulation are the two main features. Telescope: Celestron NexStar 5 mounted on a Losmandy mount. Field of View.
Nov. 8-11, th Solar-B science meeting Observational Analysis of the Relation between Coronal Loop Heating and Photospheric Magnetic Fields Y. Katsukawa.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
Solar X-ray Imager (SXI) Current and Future Requirements 22 May 2001 Steve Hill Solar Causes and Effects... Operational Requirements Improvements for GOES-R+
Review: Recent Observations on Wave Heating S. Kamio Kwasan and Hida Observatories Kyoto University.
Coronal Hole recognition by He 1083 nm imaging spectroscopy O. Malanushenko (NSO) and H.P.Jones (NASA's GSFC) Tucson, Arizona, USA Solar Image Recognition.
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
한 미 려 – Introduction (1) 2.Instrument & Observe 3.Science 2.
Shivam Raval Indian Institute of Technology, India
The Sun A cool animation of the Sun can be found on this link, click and scan down. An animation.
Jan 2016 Solar Lunar Data.
Linking in-situ measurements with SPICE
Sun: General Properties
VI. Forecasting Solar EUV/UV Radiation – EUV spectral synthesis
Coronal Structure CSI /PHYS Solar Atmosphere Fall 2004
The Sun A cool animation of the Sun can be found on this link, click and scan down. An animation.
The Sun Chapter 17.
Studying Transition Region Phenomena with Solar-B/EIS
Chapter 9 The Sun.
Spectroscopy of solar prominences simultaneously from space and ground
Astronomy notes for Phys/Geog 182
Presentation transcript:

Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO (extended version for 11 Oct 2007)

Why from space?

SUMER on Spacecraft SOHO mission time nominal 1996 – 1998 extended , , - ??? SOHO costs approx M Euro (75% ESA, 25% NASA, instruments likewise) in comparison: 1 shuttle start = approx. 500 M Euro

SOHO Spacecraft (SOlar and Heliospheric Observatory, ESA/NASA) Size 4.3 x 2.7 x 3.7 m Solar paddles 9.5 m Start weight 1850 kg Payload 610 kg 12 scientific Instruments (CDS,CELIAS, COSTEP,EIT,ERNE, GOLF,LASCO,MDI, SUMER,SWAN, UVCS,VIRGO)

SOHO Launch KSC Launch Complex 36 Atlas Centaur Launch Vehicle start 02 Dec :08 UTC at L1 14 Feb 1996

What can SUMER do? (1) Full disk scan in He I 58.4 (log radiance) 02 Mar :22 UTC – 04 Mar :46 UTC slit 1”x300” step 1.5” time 7 s

What can SUMER do? (2) Full disk scan in Ne VIII 77.0 (log radiance) 02 Feb :05 UTC – 18:12 UTC slit 1”x300” step 1.88” time 7.5 s

What can SUMER do? (3) Full disk scan in Ne VIII 77.0 (Doppler shifts) 02 Feb :05 UTC – 18:12 UTC slit 1”x300” step 1.88” time 7.5 s

SUMER (Solar Ultraviolet Measurements of Emitted Radiation) telescope and spectrometer approx. 80 – 160 nm wavelength range (1 st order) various slit sizes, variable raster step sizes, exposure times 2 detectors with 1024 spectral x 360 spatial pixels spatial resolution approx. 1” (715 km on the Sun) spectral resolution approx nm (10 km/s and better)

The SUMER Instrument (1) (Engineering Model, Integration Team in Cleanroom) designed and built (with international co-operation) at Max-Planck-Institut f. Aeronomie, MPAE (now MPS), Lindau, Germany, costs approx. 50 M Euro (55% D, 20% F, 20% USA, 5% CH)

The SUMER Instrument (2)

Anatomy of a Coronal Hole (27 Jul :16 – 28 Jul :21 UTC) Fe XII nm ( K) Mg X 62.4 nm ( K) O V 62.9 nm ( K) N V nm ( K) S II nm ( K) C I nm (< K)

Cont 154.0, Si II 153.3, C IV 154.8, Ne VIII 77.0 nm (03 Nov :55 – 04 Nov :25 UTC) < K K K K

Prominence Observation (08 Jul :04-12:51 UTC) Meudon H-alpha SOHO/EIT He II 30.4, TRACE Fe IX/X 17.1, TRACE H I Lyman alpha nm SOHO/SUMER 1”x120” slit 120 s exposure nm

Transition Region Morphology, Redshift (O VI nm, 30 Jan :38-04:57 UTC)

Spicules and Macrospicules (N V nm, 27 Apr :01 – 28 Apr :03 UTC)

Some Results of SUMER Observations The source of the fast solar wind in coronal holes High red- and blueshifts at explosive events Improved rest wavelength values for coronal lines Log-normal distribution of line radiances (in QS, not CH, AR) Normal distribution of line shifts and widths (in QS …) Interrelation between radiance and redshift (in QS …) Redshift in active region loops Damped oscillations in flare lines

Current Projects (1): Spicule Studies Collaboration with J. Pasachoff, Williams College, USA “t-y-plots” (incl. short initial back-and-forth scan): continuum line line line radiance radiance shift width C IV nm, 25 May :01-09:29 UTC

Spicule Study (C IV nm, Area near Limb)

SUMER Slit Position in EIT Image 20 Apr :01-21:44 UTC NE, Quiet Sun 20 Apr :01-17:43 UTC SE, Coronal Hole

Line Radiances along SUMER Slit

The “Height” of Regions (1” seen from SOHO at L1 corresponds to approx. 715 km on the Sun) linelog(T)lower border **upper border *** QSCHQSCH Si I4.00?(0”)(0”)5-6”4-5” Cont *4.00?(0”)(0”)5-7”5-7” Si II ”4-5”10-11”11-12” C IV ”5-6”15-19”19-20” O V5.37<<11”<<13”21”22” Ne VIII ”<<17”38-51”41-45” * above 150 nm, ** radiance peak, *** 50%-level of QS radiance

Current Projects (2): Emission Measures Collaboration with U. Feldman, NRL, USA 03 Jun :16-14:09 UTC “Sunspot Reference Spectrum” Selected lines: S IV 75.0, S IV 75.3, O V 76.0, N III 76.3, N IV 76.5, N II 77.5, S V 78.6, O IV 78.7 nm 03 Jun :10-11:14 UTC “Sunspot Map” Cont nm

AR Radiance along SUMER Slit (N IV 76.5 nm)

Current Projects (3): Active Region Loops Collaboration with W. Curdt, MPS, Germany; B.N. Dwivedi, India; S. Parenti, ROB Ne VIII 78.0 nm, 20 May :29-19:33 UTC Ne VIII 78.0 nm, 21 May :10-22:15 UTC

Active Region Loops (Ne VIII 78.0 nm, Area with Redshift)

Active Region Loops (Ne VIII 78.0 nm, Area with Blueshift)

Redshift in Chromosphere and Transition Region (well known in Quiet Sun) Si II nm, 07 Nov :05-10:08 UTC

Doppler Shift vs. Brightness Straightforward interrelation for chromosphere and transition region in Quiet Sun. More complicated in the corona and especially in Active Regions.

The Redshifted Footpoints of Coronal Loops Ne VIII 78.0 nm, O IV 78.7 nm, 21 May :10-22:15 UTC Magnetically confined structures are outlined by contours.

But now… … you know what I did last summer.