Tera-Pixel APS for CALICE Progress 20 th October 2006 [JC+RT]

Slides:



Advertisements
Similar presentations
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Advertisements

J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague TWEPP TWEPP-07 Topical Workshop on Electronics for Particle.
Tera-Pixel APS for CALICE Progress Meeting 6 th September 2006.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /
Anne-Marie Magnan Imperial College London A MAPS-based digital Electromagnetic Calorimeter for the ILC on behalf of the MAPS group: Y. Mikami, N.K. Watson,
SCIPP R&D on Long Shaping- Time Electronics SLAC SiD Workshop October 26-29, 2006 Bruce Schumm.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell 16 μm x 16 μm P-well 17 μm x 17 μm Collecting diodes 3.6 μm x 3.6 μm Bias: NWell 3.5V Diodes:
TPAC1.2 FDR JC/Feb 27 th. TPAC1.2 FDR Overview The TPAC design will be re-submitted with two mask changes to fix to key bugs in the design: 1.Non-unique.
7 January 2005 MDI Workshop M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
G.Villani march 071 CALICE pixel Deep P-Well results Nwells P-well 3μm guard ring Diodes [3.6,1.8,0.9] x[3.6,1.8,0.9]μm 2 Bias: NWell 1.8/1V Diodes: 1.5V.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
1 The MAPS ECAL ECFA-2008; Warsaw, 11 th June 2008 John Wilson (University of Birmingham) On behalf of the CALICE MAPS group: J.P.Crooks, M.M.Stanitzki,
MAPS ECAL Nigel Watson Birmingham University  Overview  Testing  Summary For the CALICE MAPS group J.P.Crooks, M.M.Stanitzki, K.D.Stefanov, R.Turchetta,
Tera-Pixel APS for CALICE Progress meeting, 12 th July 2006 Jamie Crooks, Microelectronics/RAL.
Tera-Pixel APS for CALICE Progress meeting, 17 th May 2006 Jamie Crooks, Microelectronics/RAL.
Tera-Pixel APS for CALICE Progress 19 th January 2007.
Tera-Pixel APS for CALICE Progress 13 th November 2006.
SCIPP R&D on Long Shaping- Time Electronics SLAC SiD Workshop October 26-28, 2006 Bruce Schumm.
TPAC1.1 Testing JC/Jan 16 th. Comparator Investigations Two (related) symptoms were observed – Non-gaussian threshold scans, with steep sides and flat.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
TeraPixel APS for CALICE Progress meeting 9th Dec 2005 Jamie Crooks, Microelectronics/RAL.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
Tera-Pixel APS for CALICE Progress meeting, 17 th September 2007 Jamie Crooks, Microelectronics/RAL.
ASIC1 progress Jamie Crooks, Feb 08. Bonding Problems: Resolved Smaller bonding wedge + revised programShorts to seal ring discovered under bonds.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Dr Renato Turchetta CMOS Sensor Design Group CCLRC Technology Large Area Monolithic Active Pixel Sensors.
Building blocks 0.18 µm XFAB SOI Calice Meeting - Argonne 2014 CALIIMAX-HEP 18/03/2014 Jean-Baptiste Cizel - Calice meeting Argonne 1.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
MAPS for a “Tera-Pixel” ECAL at the International Linear Collider J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
NA62 Gigatracker Working Group Meeting 23 March 2010 Massimiliano Fiorini CERN.
J. Crooks STFC Rutherford Appleton Laboratory
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
SIAM M. Despeisse / 29 th January Toward a Gigatracker Front-end - Performance of the NINO LCO and HCO Matthieu Despeisse F. Osmic, S. Tiuraniemi,
AHCAL Electronics. SPIROC2 and HBU measurement results Mathias Reinecke CALICE main meeting Univ. HASSAN II, Casablanca, Morocco Sept. 23rd, 2010.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Prague September TWEPP-07 Topical Workshop on Electronics for.
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
A MAPS-based readout for a Tera-Pixel electromagnetic calorimeter at the ILC Marcel Stanitzki STFC-Rutherford Appleton Laboratory Y. Mikami, O. Miller,
Tera-Pixel APS for CALICE Progress 30 th November 2006.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Tera-Pixel APS for CALICE Progress meeting, 6 th June 2006 Jamie Crooks, Microelectronics/RAL.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
Konstantin Stefanov 05/10/ Detecting elements for the CALICE MAPS design How does the collected charge depend on 1.Diode size? 2.Diode position with.
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
Marcel Stanitzki 1 The MAPS ECAL Status and prospects Fermilab 10/Apr/2007 Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
Ivan Peric, Christian Kreidl, Peter Fischer University of Heidelberg
A MAPS-based readout of an electromagnetic calorimeter for the ILC
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
AIDA design review 12 May 2008 Davide Braga Steve Thomas
TPAC1.1 progress Jamie C 4th June 2008.
SiD Electronic Concepts
ADS7841 SAR Input Model (6/1/17)
MCP Electronics Time resolution, costs
CALICE simulation results G.Villani 06
Beam Tests data vs Matlab simulations
IN5350 – CMOS Image Sensor Design
Presentation transcript:

Tera-Pixel APS for CALICE Progress 20 th October 2006 [JC+RT]

PreSample Pixel Rst Vrst Preamp PreRst Buffer s.f Cpre Cin Buffer s.f RstSample Cstore Vth+ Vth- 3ns 12ns Preamp Shaper Rst VrefVref-Vth Buffer s.f PreShape Pixel

PreampSource Follow er ShaperComparator (in- pixel) Comparator (off- pixel) 1.8v 3uA1.1uA1.7uA0.5uA0.3uA 5.4uW2uW3uW0.9uW0.5uW Pixel Source followe r Charge (Pre)am plifier Output Source Follow er Comparator (in- pixel) Comparator (off- pixel) 1.8v 0.9uA1.3uA1.2uA1uA750nA 1.6uW2.4uW2.2uW1.8uW1.3uW PreSample Pixel 9.3μW 11.8μW

PreSample Pixel PreShape Pixel 250 electron hit 55mV typ. ~150ns above threshold 220uV/electron 250 electron hit 75mV typ. requires reset ( ns) 300uV/electron

PreSample Pixel PreShape Pixel Transient Noise 11mV typ at input to comparator ~ 50 electrons Transient Noise 6.9mV typ at input to comparator *√2 = 9.8mV (*√2 due to sampling) ~ 32 electrons

PreSample Pixel PreShape Pixel Signal/Noise optimisation Larger diode capacitance increases noise Signal/Noise optimisation Larger diode capacitance decreases signal

PreSample Pixel PreShape Pixel NWELL = 1.3 x 6.3 μm NWELL = 5 x 5 μm

PreSample Pixel PreShape Pixel Risks Cpre feedback cap Risks Cpre feedback cap >10 MIP behaviour Saturation causes pulse elongation  double hits >10 MIP behaviour Increased error in reset sample for subsequent hit Advantages Always active (no reset) No overflow (pixel recovers after saturation) Disadvantages Power NWELL S/N Mismatch Disadvantages Requires reset after hit  additional logic  dead time after hit Reset sample can contain error Pixel can saturate (overflow) Advantages Power NWELL S/N