Molecular Structure and Organic Chemistry The structure of a molecule refers to the arrangement of atoms within the molecule. The structure of a molecule.

Slides:



Advertisements
Similar presentations
Infrared Spectroscopy
Advertisements

Infrared Spectroscopy
Infrared (IR).
Mass Spectrometry Introduction:
Infrared Spectroscopy
Infrared Spectroscopy Chapter 12. Table 12.1, p.472 Energy.
Structural Information
1 CHAPTER 9 Spectroscopy: the study of the interaction of energy with matter Energy applied to matter can be absorbed, emitted, cause a chemical change,
Chapter 12 Infrared Spectroscopy and Mass Spectrometry
INFRARED SPECTROSCOPY (IR)
Infrared Spectroscopy
Infra Red Spectroscopy
Chapter 12 Mass Spectrometry and Infrared Spectroscopy
KHS ChemistryUnit 3.4 Structural Analysis1 Structural Analysis 2 Adv Higher Unit 3 Topic 4 Gordon Watson Chemistry Department, Kelso High School.
Families of Carbon Compounds
Spectroscopy: IR Renee Y. Becker Valencia Community College CHM 2011.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
Infrared Spectroscopy
Structure Determination by Spectroscopy Mass spectroscopy Ultraviolet-visible spectroscopy Infrared spectroscopy Nuclear magnetic resonance spectroscopy.
Provides information about the vibraions of functional groups in a molecule Infrared Spectroscopy Therefore, the functional groups present in a molecule.
Chapter 2: IR Spectroscopy Paras Shah
12-1 Organic Chemistry William H. Brown Christopher S. Foote Brent L. Iverson William H. Brown Christopher S. Foote Brent L. Iverson.
Organic Chemistry William H. Brown & Christopher S. Foote.
Exam 1 Review: Tuesday, 5/1 YH3069 from 7-9pm (Ray) Winter 2012 Problems: 4–7, 15, 22. Winter 2011 Problems: 1–11, 23, 28, 29. Spring 2011, Lecture 1 Problems:
INFRA RED SPECTROSCOPY A guide for A level students.
Spectra All electromagnetic radiation travels in waves at the same velocity, commonly known as the speed of light. In a vacuum this value is known to be.
Infrared Spectroscopy
© 2014 Pearson Education, Inc. Mass Spectrometry, Infrared Spectroscopy, and Ultraviolet/Visible Spectroscopy Paula Yurkanis Bruice University of California,
C-H Stretch 2962 and 2872 cm -1 C-H in CH 3 strong 2926 and 2853 cm -1 C-H in CH 2 strong 2890 cm -1 tertiary C-H weak All ± 10 cm cm -1 C-H stretch.
Chapter 3 Infrared Spectroscopy Each interatomic bond may vibrate in several different motions (stretching or bending) - vibrational, rotational energy.
Infrared Spectroscopy
FTIR -- InfraRed IR 1. Bet vis & microwave 2. Organic chemists use cm cm -1  E of vibration No 2 cmpds give exact sample IR (enantimoers)
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
Why this Chapter? Finding structures of new molecules synthesized is critical To get a good idea of the range of structural techniques available and how.
Infrared Spectroscopy
INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
California State University, Monterey Bay CHEM312
The Electromagnetic Spectrum
Infrared Spectroscopy (IR) Fourier Transform Infrared (FTIR)
Infrared Spectroscopy
Infrared Spectroscopy
John E. McMurry Paul D. Adams University of Arkansas Chapter 12 Structure Determination: Mass Spectrometry and Infrared.
CHAPTER 11 Alkenes; Infrared Spectroscopy and Mass Spectroscopy.
Infrared (IR) Spectroscopy for Structural Analysis Ridwan Islam.
INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra.
Infra-red Spectroscopy
INFRA RED SPECTROSCOPY
Determining the Structure of an Organic Compound
INFRA RED SPECTROSCOPY
Determining the Structure of an Organic Compound
IR Infrared Spectroscopy Identify the functional group(s)
Infrared Spectroscopy
INFRA RED SPECTROSCOPY
Determining the Structure of an Organic Compound
IR-Spectroscopy IR region Interaction of IR with molecules
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
Vibrational Spectroscopy - IR
IR-Spectroscopy IR region Interaction of IR with molecules
Figure: Caption: The electromagnetic spectrum is the range of all possible frequencies, from zero to infinity. In practice, the spectrum ranges.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
INFRA RED SPECTROSCOPY
WM4 Instrumental analysis
The Electromagnetic Spectrum
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Based on McMurry’s Organic Chemistry, 7th edition.
Renee Y. Becker Valencia Community College CHM 2011
INFRA RED SPECTROSCOPY
Determining the Structure of an Organic Compound
Presentation transcript:

Molecular Structure and Organic Chemistry The structure of a molecule refers to the arrangement of atoms within the molecule. The structure of a molecule is critical to the chemical and physical properties of a substance. In fact so vital is structure to molecular identity that the same molecular formula may represent more than one substance based upon their differing structures. Example: Two totally different substances share the same molecular formula, C 2 H 6 O, but are different because of their differing molecular structures. Ethyl Alcohol C 2 H 6 O Dimethyl Ether C 2 H 6 O

Importance of Molecular Structure Ethyl Alcohol C 2 H 6 O Dimethyl Ether C 2 H 6 O CH 3 O O CH 2 H

Isomers Molecules that have the same molecular formulas but different structures are called isomers There are 2 isomers corresponding to the molecular formula C 4 H 10, 3 corresponding to C 5 H 12 and 39 corresponding to the molecular formula C 9 H 20

CH 3 CH 2 CH 2 CH 3 CH(CH 3 ) 3 CH 3 CH 2 CH 2 CH 2 CH 3 CH 3 CH 2 CH(CH 3 ) 2 C(CH 3 ) 4

using molecular vibrations as a key to structure Although ball and stick models of molecules are very effective at approximating the actual shapes of molecules, they do have one major flaw they leave you with the false impression that molecules are rigid objects The atoms that make up molecules are in constant motion. They are continually flexing about their bonds. This flexing is referred to as vibrational motion. There are several types of vibrations, the two most basic vibrational modes are stretching and bending.

Some Vibrational Modes Show clip of various vibrational modes here. =>

Molecular Vibrations Covalent bonds vibrate at only certain allowable frequencies. =>

Vibrations as a Key to Structure Each type of vibration has a frequency that depends upon the: For a constant bond type (single, double or triple) the frequency of the vibration is low for a bond between heavy atoms. Conversely, for a given bond type the frequency of vibrations is high for light atoms. Multiple bonds vibrate at a higher frequency than do single bonds

Stretching Frequencies Frequency decreases with increasing atomic weight. Frequency increases with increasing bond energy. =>

Infrared Absorbtions Vibrations as a key to structure- the entire range of vibrations for all organic molecules falls within the Infrared Region of the Electromagnetic Spectrum(2500nm – 25000nm). If a beam of IR radiation is directed at a molecular sample and if the beam has the same frequency as one of the vibrational modes of the molecule then the molecule will absorb the energy of the IR radiation and the molecular vibration will increase in intensity.

The IR Region Just below red in the visible region. Wavelengths usually  m. More common units are wavenumbers, or cm -1, the reciprocal of the wavelength in centimeters. Wavenumbers are proportional to frequency and energy. =>

Infrared Absorbtions If in order for absorption to occur, the IR frequency must match the frequency of the vibrating atoms, and if the frequency of the vibrating atoms is dependent upon the mass of the atoms and the bond type; then the frequency at which absorbance occurs is dependant upon the mass of the atoms and the bond type. Therefore, the same two bonded atoms, regardless of the molecule that they are in, will have the same absorbance frequency in the IR region. This is the major strength of IR Spectrophotometry. IR Spec identifies the present in an organic molecule.

Functional Group- this is an atom or group of atoms that imparts a unique set of chemistry to whatever organic molecule it is bonded to. If the same functional group is attached to two different organic molecules then the two organic molecules will have similar chemistry’s and have similar absorbance values of the IR Specs. Show clip of absorbtion frequencies for various functional groups.

O-H and N-H Stretching Both of these occur around 3300 cm -1, but they look different. –Alcohol O-H, broad with rounded tip. –Secondary amine (R 2 NH), broad with one sharp spike. –Primary amine (RNH 2 ), broad with two sharp spikes. –No signal for a tertiary amine (R 3 N) =>

An Alcohol IR Spectrum =>

An Amine IR Spectrum =>

Carbonyl Stretching The C=O bond of simple ketones, aldehydes, and carboxylic acids absorb around 1710 cm -1. Usually, it’s the strongest IR signal. Carboxylic acids will have O-H also. Aldehydes have two C-H signals around 2700 and 2800 cm -1. =>

A Ketone IR Spectrum =>

An Aldehyde IR Spectrum =>

O-H Stretch of a Carboxylic Acid This O-H absorbs broadly, cm -1, due to strong hydrogen bonding. =>

Variations in C=O Absorption Conjugation of C=O with C=C lowers the stretching frequency to ~1680 cm -1. The C=O group of an amide absorbs at an even lower frequency, cm -1. The C=O of an ester absorbs at a higher frequency, ~ cm -1. Carbonyl groups in small rings (5 C’s or less) absorb at an even higher frequency. =>

An Amide IR Spectrum =>

Carbon - Nitrogen Stretching C - N absorbs around 1200 cm -1. C = N absorbs around 1660 cm -1 and is much stronger than the C = C absorption in the same region. C  N absorbs strongly just above 2200 cm -1. The alkyne C  C signal is much weaker and is just below 2200 cm -1. =>

A Nitrile IR Spectrum =>

IR Spectrophotometers Because every molecule has a unique set of atoms and bonds that compose it, each molecule will absorb IR radiation only at certain frequencies. These frequencies are related to the types of bonds and arrangements of atoms in a molecule. An IR Spectrophotometer is an instrument that measures the absorbance of IR radiation by a sample as a function of frequency.

The Hydrocarbon Skeleton All organic molecules consist of nothing more than a hydrocarbon skeleton with functional groups hung off that skeleton at various positions. We have just seen that functional groups can be identified by their characteristic IR absorbtions. Let us now investigate the characteristic IR absorbtions of the hydrocarbon skeleton

Carbon-Carbon Bond Stretching Stronger bonds absorb at higher frequencies: –C-C 1200 cm -1 –C=C 1660 cm -1 –C  C 2200 cm -1 (weak or absent if internal) Conjugation lowers the frequency: –isolated C=C cm -1 –conjugated C=C cm -1 –aromatic C=C approx cm -1 =>

Carbon-Hydrogen Stretching Bonds with more s character absorb at a higher frequency. –sp 3 C-H, just below 3000 cm -1 (to the right) –sp 2 C-H, just above 3000 cm -1 (to the left) –sp C-H, at 3300 cm -1 =>

An Alkane IR Spectrum =>

An Alkene IR Spectrum =>

An Alkyne IR Spectrum =>

Vibrational Motions