Ofer Lahav University College London (I)Neutrino Masses from LSS (I)Neutrino Masses from the CMB (III) The Dark Energy Survey.

Slides:



Advertisements
Similar presentations
Will the Dark Energy Survey measure neutrino masses? Will the Dark Energy Survey measure neutrino masses?
Advertisements

Observing Dark Energy SDSS, DES, WFMOS teams. Understanding Dark Energy No compelling theory, must be observational driven We can make progress on questions:
Surveys of Dark Energy: Challenges and Prospects Ofer Lahav University College London Cosmology post WMAP/2dF/SDSS/… The Dark Energy Survey Photometric.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
DESpec: Key Science Goals Ofer Lahav University College London - DES and needs for spectroscopy per probe - The landscape of spectroscopic surveys - Improving.
UCL’s interests: photo-z, mass-obs calibration, systematics Granada, Sep 2010 Ofer Lahav, University College London Ofer Lahav, Stephanie Jouvel, Ole Host.
Photo-z for LRGs, DES, DUNE and the cross talk with Dark Energy Ofer Lahav, University College London 1. The Dark Energy Survey 2. Photo-z methodology.
Optimization of large-scale surveys to probe the DE David Parkinson University of Sussex Prospects and Principles for Probing the Problematic Propulsion.
CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Massive Spectroscopy for Dark Energy in the South Josh Frieman MS-DESI Meeting, LBNL, March 2013 Some details in DESpec White Paper arXiv: (Abdalla,
Dark Energy Survey The DES Collaboration Josh Frieman, Ofer Lahav, JW.
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
Cosmology with Spectroscopic and Photometric Redshift Surveys Ofer Lahav Department of Physics and Astronomy University College London The post-2dF/SDSS/WMAP3.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
Progress on Cosmology Sarah Bridle University College London.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
August '04 - Joe Mohr Blanco Instrument Review Presentations to Blanco Instrument Review Panel Intro and Science 1 Mohr Intro and Science 1 Mohr Science.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
“Observing Dark Energy” Bob Nichol ICG, Portsmouth Special thanks to Masao Sako, David Weinberg, Andy Connolly, Albert Stebbins, Rob Crittenden, Daniel.
P5 – April 20, The Dark Energy Survey Josh Frieman White Papers submitted to Dark Energy Task Force: astro-ph/ Theoretical & Computational.
Studying Cosmic acceleration and neutrino masses with DES. Studying Cosmic acceleration and neutrino masses with DES.
Each 6” wafer contains: 4 2k×4k, 1 2k × 2k, & × 1k Follows SNAP model: Foundry performs first 8 steps on 650  m high resistivity wafers (10 kohm-cm)
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
Cosmic Structures: Challenges for Astro-Statistics Ofer Lahav Department of Physics and Astronomy University College London * Data compression – e.g. P(k)
The Dark Energy Survey Fundamental Physics at Fermilab James Annis Experimental Astrophysics.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Introduction to Cosmology Ofer Lahav University College London The zoo of cosmological parameters Dark Matter and Dark Energy surveys.
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
Brenna Flaugher Dark Energy Symposium StSci May The Dark Energy Survey (DES) Proposal: –Perform a 5000 sq. deg. survey of the southern galactic.
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
Brenna Flaugher FRA Oct Dark Energy Survey (DES) Motivation Dark Energy is the dominant constituent of the Universe Dark Matter is next 95% of.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Yun Wang, 3/2011 Baryon Acoustic Oscillations and DE Figure of Merit Yun Wang Yun Wang WFIRST SDT #2, March 2011 WFIRST SDT #2, March 2011 BAO as a robust.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
Constraining Cosmology with Peculiar Velocities of Type Ia Supernovae Cosmo 2007 Troels Haugbølle Institute for Physics & Astronomy,
WFMOS KAOS concept identified via the Gemini Aspen Process and completed a Feasibility Study (Barden et al.) Proposed MOS on Subaru via an international.
Weak Lensing from Space with SNAP Alexandre Refregier (IoA) Richard Ellis (Caltech) David Bacon (IoA) Richard Massey (IoA) Gary Bernstein (Michigan) Tim.
What’s going on with Dark Energy? Bill Carithers Aspen 2008.
Huan Lin 1FNAL ECcmbC Workshop 26 May 2006 The Dark Energy Survey (DES) Huan Lin Experimental Astrophysics Group Fermilab On behalf of the Dark Energy.
Tim McKay, Fermilab Users Meeting, June 6, Dark Energy Experiments: DES and Beyond Tim McKay University of Michigan Presented for the Dark Energy.
“The Dark SDSS” Bob Nichol ICG, Portsmouth Special thanks to Masao Sako, David Weinberg, Andy Connolly, Albert Stebbins, Rob Crittenden, Daniel Eisenstein,
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
The Instrument The focal plane is like an HEP detector, larger than any present astronomical camera, but smaller than a vertex detector. ½ Billion pixels.
DES Collaboration Meeting – Dec. 11, Dark Energy Survey Science Proposal Josh Frieman
The XMM Cluster Survey: Project summary and Cosmology Forecasts Kathy Romer University of Sussex.
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27, 2006.
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
CTIO Camera Mtg - Dec ‘03 Studies of Dark Energy with Galaxy Clusters Joe Mohr Department of Astronomy Department of Physics University of Illinois.
Cheng Zhao Supervisor: Charling Tao
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
TR33 in the Light of the US- Dark Energy Task Force Report Thomas Reiprich Danny Hudson Oxana Nenestyan Holger Israel Emmy Noether Research Group Argelander-Institut.
Brenna Flaugher FNAL All Experimenters Meeting June Dark Energy Survey Motivation Dark Energy is the dominant constituent of the Universe Dark Matter.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
The Dark Energy Survey Probe origin of Cosmic Acceleration:
Complementarity of Dark Energy Probes
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Cosmology with Photometric redsfhits
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Ofer Lahav University College London (I)Neutrino Masses from LSS (I)Neutrino Masses from the CMB (III) The Dark Energy Survey

Concordance Cosmology  SN Ia  CMB  LSS – Baryonic Oscillations  Cluster counts  Weak Lensing  Integrated Sachs Wolfe Physical effects: * Geometry * Growth of Structure

Massive Neutrinos and Cosmology * Why bother? – absolute mass, effect on other parameters * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from cosmology within  CDM M < 1 eV * Mixed Dark Matter? * Non-linear power spectrum and biasing – halo model * Combined cosmological observations and laboratory experiments 

Brief History of ‘Hot Dark Matter’ * 1970s : Top-down scenario with massive neutrinos (HDM) – Zeldovich Pancakes * 1980s: HDM - Problems with structure formation * 1990s: Mixed CDM (80%) + HDM (20% ) * 2000s: Baryons (4%) + CDM (26%) +Lambda (70%): But now we know HDM exists! How much?

Globalisation and the New Cosmology  How is the New Cosmology affected by Globalisation?  Recall the Cold War era: Hot Dark Matter/top-down (East) vs. Cold Dark Matter/bottom-up (West)  Is the agreement on the `concordance model’ a product of Globalisation? OL, astro-ph/

From Great Walls to Neutrino Masses

Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales k > k nr = (m  /1 eV) 1/2  m 1/2 h/Mpc Colombi, Dodelson, & Widrow 1995  WDMCDM+HDM CDM Massive neutrinos mimic a smaller source term

Neutrino properties The number of neutrino species N affects the expansion rate of the universe, hence BBN. BBN constraints N between 1.7 and 3 (95% CL) (e.g. Barger et al. 2003). From CMB+LSS+SN Ia, N = (95% CL) (Hannestad 2005) We shall assume N  =3 neutrinos Electron, muon and tau neutrinos Eigen states Eigen states m 1, m 2, m 3  neutrinos per cm 3   h    eV  

Neutrino Mass Hierarchy

Absolute Masses of Neutrinos Based on measured squared mass differences from solar and atmospheric oscillations Assuming m 1 < m 2 < m 3   E & L, NJP 05

What could cosmic probes tell us about Neutrinos and Dark Energy?

The Growth factor: degeneracy of Neutrinos Mass and Dark Energy Kiakotou, Elgaroy, OL

Kiakotou, Elgaroy, OL 2007, astro-ph  P(k)/P(k) = -8    m Not valid on useful scales!

Weighing Neutrinos with 2dFGRS  Free streaming effect:   /  m  < 0.13 Total mass M< 1.8 eV    (Oscillations) (2dF)  a Four-Component Universe ? Elgaroy, Lahav & 2dFGRS team, astro-ph/ , PRL   =

What do we mean by ‘systematic uncertainties’? Cosmological (parameters and priors) Astrophysical (e.g. Galaxy biasing) Instrumental (e.g. ‘seeing’)

Degeneracy of neutrino mass n= 0.9 n= 1.1 n=1.0 Prior 0<  m <0.5

Biasing vs. neutrino mass Elgaroy & Lahav, JCAP, astro-ph/ SAM for L>0.75 L* P g (k) = b 2 (k) P m (k) b(k) = a log(k) + c a Total neutrino mass

Weak Lensing is promising Abazajian & Dodelson (2003)  also Hannestad et al. 2006

Non-linear P(k) with massive neutrinos Abazajian et al. (astro-ph/ ) modeled the effects of neutrino infall into CDM halos and incorporated it in the halo model. The effect is small:  P(k)/P(k) » 1% at k » 0.5 h/Mpc for M » 1 eV Future work : high-resolution simulations with CDM, baryons and neutrinos

CMB with massive E&L 2004 E&L 2004 M =0.3, 0.9, 1.5, 6.0 eV Fixed  cdm = 0.26

Neutrinos masses and the CMB If z nr > z rec    h 2 > (i.e. M > 1.6 eV) Then neutrinos behave like matter - this defines a critical value in CMB features * Ichikawa et al. (2004 ) from WMAP1 alone  M < 2.0 eV * Fukugita et al. (2006) from WMAP3 alone  M < 2.0 eV 

Normalization vs neutrino mass using WMAP alone + concordance model

Is CMB polarisation useful for neutrino mass? Fukugita, Ichikawa, Kawasaki, OL, astro-ph/ Not directly, but reduces degeneracy with the reionization optical depth

Ratio of bulk flows with massive neutrinos  =0.04

Deriving Neutrino mass from Cosmology DataAuthors M  m i 2dF (P01)Elgaroy, OL et al.02 < 1.8 eV WMAP+LSS+SN … Spergel et al. 06 < 0.68 eV 2dF (C05)+CMBSanchez et al. 05 < 1.2 eV BAO+CMB+LSS +SN Goobar et al. 06 < 0.62 eV Ly-  + SDSS+ WMAP+… Seljak et al. 04 < 0.17 eV WMAP aloneIchikawa et al. 04 Fukugita et al. 06 < 2.0 eV All upper limits 95% CL, but different assumed priors !

Forecasting Neutrino mass from Cosmology DataAuthors error High-z galaxy surveys + Planck Takada et al. (2006) eV High-z galaxy surveys + Planck Hannestad & Wong (2007) 0.05 eV SKA + PlanckAbdalla & Rawlings(2007) 0.05 eV Note different error definitions and assumed priors !

Combined Cosmology & Terrestrial Experiments Fogli et al. Hep-ph/

Combining KATRIN+CMB (Host, OL, Abdalla & Eitel 2007) =>> Ole’s talk

Neutrinos - Summary * Redshift surveys (+ CMB) M < eV Ly-  (+ CMB+LSS)  M < 0.17 eV * Within the  -CDM scenarios, subject to priors. * Alternatives: MDM ruled out. * Future: errors down to 0.05 eV using SDSS+Planck, and weak gravitational lensing of background galaxies and of the CMB. Resolve the neutrino absolute mass!

Baryon Wiggles as Standard Rulers

Imaging Surveys Survey Sq. Degrees FiltersDepthDatesStatus CTIO751shallowpublished VIRMOS91moderatepublished COSMOS2 (space)1moderatecomplete DLS (NOAO) 364deepcomplete Subaru30?1?deep 2005? observing CFH Legacy 1705moderate observing RCS2 (CFH) 8303shallow approved VST/KIDS/ VISTA/VIKING moderate ? 50%approved DES (NOAO) 50004moderate ? proposed Pan-STARRS ~10,000?5?moderate ? ~funded LSST15,000?5?deep ? proposed JDEM/SNAP (space) 9deep ? proposed VST/VISTA DUNE 5000? ? moderate 4+5 proposed 20000? (space) 2+1? moderate ? proposed Y. Y. Mellier

DUNE: Dark UNiverse Explorer Mission baseline: 1.2m telescope FOV 0.5 deg 2 PSF FWHM 0.23’’ Pixels 0.11’’ GEO (or HEO) orbit Surveys (3-year initial programme): WL survey: 20,000 deg 2 in 1 red broad band, 35 galaxies/amin 2 with median z ~ 1, ground based complement for photo-z’s Near-IR survey (J,H). Deeper than possible from ground. Secures z > 1 photo-z’s SNe survey: 2  x  60 deg 2, observed for 9 months each every 4 days in 6 bands, SNe out to z ~ 1.5, ground based spectroscopy

Photometric redshift Probe strong spectral features (4000 break) Difference in flux through filters as the galaxy is redshifted.

*Training on ~13,000 2SLAQ *Generating with ANNz Photo-z for ~1,000,000 LRGs MegaZ-LRG  z = Collister, Lahav, Blake et al., astro-ph/

Baryon oscillations Blake, Collister, Bridle & Lahav; astro-ph/

The Dark Energy Survey Study Dark Energy using 4 complementary techniques: I. Cluster Counts II. Weak Lensing III. Baryon Acoustic Oscillations IV. Supernovae Two multi-band surveys 5000 deg 2 g, r, i, z 40 deg 2 repeat (SNe) Build new 3 deg 2 camera and data management system Survey (525 nights) Response to NOAO AO Blanco 4-meter at CTIO 300,000,000 photometric redshifts

The DES Collaboration Fermilab: J. Annis, H. T. Diehl, S. Dodelson, J. Estrada, B. Flaugher, J. Frieman, S. Kent, H. Lin, P. Limon, K. W. Merritt, J. Peoples, V. Scarpine, A. Stebbins, C. Stoughton, D. Tucker, W. Wester University of Illinois at Urbana-Champaign: C. Beldica, R. Brunner, I. Karliner, J. Mohr, R. Plante, P. Ricker, M. Selen, J. Thaler University of Chicago: J. Carlstrom, S. Dodelson, J. Frieman, M. Gladders, W. Hu, S. Kent, R. Kessler, E. Sheldon, R. Wechsler Lawrence Berkeley National Lab: N. Roe, C. Bebek, M. Levi, S. Perlmutter University of Michigan: R. Bernstein, B. Bigelow, M. Campbell, D. Gerdes, A. Evrard, W. Lorenzon, T. McKay, M. Schubnell, G. Tarle, M. Tecchio NOAO/CTIO: T. Abbott, C. Miller, C. Smith, N. Suntzeff, A. Walker CSIC/Institut d'Estudis Espacials de Catalunya (Barcelona): F. Castander, P. Fosalba, E. Gaztañaga, J. Miralda-Escude Institut de Fisica d'Altes Energies (Barcelona): E. Fernández, M. Martínez CIEMAT (Madrid): C. Mana, M. Molla, E. Sanchez, J. Garcia-Bellido University College London: O. Lahav, D. Brooks, P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller University of Cambridge: G. Efstathiou, R. McMahon, W. Sutherland University of Edinburgh: J. Peacock University of Portsmouth: R. Crittenden, R. Nichol, R. Maartnes, W. Percival University of Sussex: A. Liddle, K. Romer plus postdocs and students

The Dark Energy Survey UK Consortium (I) PPARC funding: O. Lahav (PI), P. Doel, M. Barlow, S. Bridle, S. Viti, J. Weller (UCL), R. Nichol (Portsmouth), G. Efstathiou, R. McMahon, W. Sutherland (Cambridge) J. Peacock (Edinburgh) Submitted a proposal to PPARC requesting £ 1.7M for the DES optical design. In March 2006, PPARC Council announced that it “will seek participation in DES”. PPARC already approved £220K for current R&D. (II) SRIF3 funding: R. Nichol, R. Crittenden, R. Maartens, W. Percival (ICG Portsmouth) K. Romer, A. Liddle (Sussex) Funding the optical glass blanks for the UCL DES optical work These scientists will work together through the UK DES Consortium. Other DES proposals are under consideration by US and Spanish funding agencies.

DES Forecasts: Power of Multiple Techniques Assumptions: Clusters:  8 =0.75, z max =1.5, WL mass calibration BAO: l max =300 WL: l max =1000 (no bispectrum) Statistical+photo-z systematic errors only Spatial curvature, galaxy bias marginalized, Planck CMB prior Factor 4.6 improvement over Stage II w(z) =w 0 +w a (1–a) 68% CL DETF Figure of Merit: inverse area of ellipse

DES z=0.8 photo-z shell Back of the envelope: improved by sqrt (volume) => Sub-eV from DES (OL, Abdalla, Black; in prep)   0.0 eV

* 4-5 complementary probes * Survey strategy delivers substantial DE science after 2 years * Relatively modest (~ $20-30M), low-risk, near-term project with high discovery potential * Synergy with SPT and VISTA on the DETF Stage III timescale * Scientific and technical precursor to the more ambitious Stage IV Dark Energy projects to follow: LSST and JDEM DES and a Dark Energy Programme

Some Outstanding Questions : * Vacuum energy (cosmological constant, w= after all ?) * Dynamical scalar field ? * Modified gravity ? * Why   /  m = 3 ? * Non-zero Neutrino mass < 1eV ? * The exact value of the spectral index: n < 1 ? * Excess power on large scales ? * Is the curvature zero exactly ?