Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Ф. Н. Царев, А. А. Шалыто 2007 год.

Slides:



Advertisements
Similar presentations
Выпускная квалификационная работа на тему: «Применение интернет-технологий как фактор повышения эффективности функционирования организации (на примере.
Advertisements

Поиск оптимального набора параметров оптимизаций компилятора Брусенцов Леонид Евгеньевич студент 4 курса ФИТ НГУ Руководители:Илья.
Применение генетических алгоритмов для генерации автоматов при построении модели максимального правдоподобия и в задачах управления Выполнил: Бедный Юрий,
Образовательный комплекс "Теория и практика параллельного программирования" Гергель В.П., профессор, д.т.н. Декан факультета ВМК ННГУ Мастер - классы "
Автоматическая генерация кода программ с явным выделением состояний Канжелев С.Ю. магистрант СПбГУ ИТМО Шалыто А.А. доктор технических наук профессор СПбГУ.
Разработка и внедрение объектно-ориентированной библиотеки для автоматизации тестирования Кафедра системного программирования Студент: Олейник А.Л. 544.
Дипломная работа Ивановой О.О., группа 545 Научный руководитель: д. ф.-м. н., профессор Терехов А.Н. Генерация кода по диаграмме активностей.
Расторгуев А.C., 545 группа Научный руководитель: Пименов А.А. Рецензент: ст. преп. Смирнова Е.А.
Системы отбора. Условные обозначения (1) (2) (3) (4) (5) (6) (7) Математическое моделирование процессов отбора2.
Автоматизированная поддержка пользовательской документации Web-приложений, разрабатываемых в среде WebRatio Студент: Дорохов Вадим, 544 гр. Научный руководитель:
ООО «Баркод Маркет».  Инвентаризация имущества – программная система, позволяющая организовать учет любого имущества компании.  Уменьшение неконтролируемых.
Министерство Образования и Науки Республики Татарстан сентября 2010 г. г. Казань Всемирный банк Развитие школ Республики Татарстан в условиях.
Тел. (495) Москва, а/я 212 Рабочая группа по реформе МВД Москва, 2010 Новикова Асмик, Фонд «Общественный вердикт»
Инструмент реинжиниринга спецификаций трансляций Константин Андреевич Улитин Научный руководитель: Я.А. Кириленко Рецензент: Н.М. Тимофеев Санкт-Петербургский.
ПРИНЦИПЫ РАЗРАБОТКИ СИСТЕМЫ КЛАССА LEARNING MANAGEMENT SYSTEM И ОПЫТ ЕЕ ИСПОЛЬЗОВАНИЯ НА ФАКУЛЬТЕТЕ МЕНЕДЖМЕНТА Афанасьева С.В. Кафедра бизнес-информатики.
Неотрицательное решение задачи Коши. Нередко постановка задачи требует чтобы фазовые переменные принимали лишь неотрицательные значения. Так, в физических.
Применение генетического программирования для построения автоматов А. А. Шалыто Г. А. Корнеев Санкт-Петербургский государственный университет информационных.
Виртуальная лаборатория для первоначального обучения проектированию программ Н. Н. Красильников, В. Г. Парфенов, Ф. Н. Царев, А. А. Шалыто Кафедра компьютерных.
1 СПбГУ ИТМО, кафедра Компьютерных Технологий ПРИМЕНЕНИЕ АВТОМАТНОГО ПРОГРАММИРОВАНИЯ ДЛЯ ПОСТРОЕНИЯ СИСТЕМ УПРАВЛЕНИЯ БИЗНЕС- ПРОЦЕССАМИ Евгений Андреевич.
Параметризация устройств сетевого управления Казакова А.С. Научный руководитель: Венгерова Е.А. Рецензент: Ушаков К.С. Кафедра системного программирования.
UNIVERS software presentation Oct Пакет ЮНИВЕРС UNIVERS software Области применения: Привязочное ВСП Привязочное ВСП Обработка ВСП и НВСП Обработка.
Блок 3. Семейства белков I. Множественное выравнивание Первый курс, весна 2008, А.Б.Рахманинова.
Разработка программного обеспечения (Software Engineering) Часть 2. Создание ПО.
1 Генерация контекстных ограничений для баз данных Выполнил: Жолудев В. Научный руководитель: Терехов А.Н. Рецензент: Иванов А.Н.
L/O/G/O Психология решения задач и проблем: классика и современность Спиридонов В.Ф. (РГГУ-ГУВШЭ)
Совместное применение генетического программирования и верификации моделей для построения автоматов управления системами со сложным поведением К. В. Егоров,
Основы цифровой обработки речевых сигналов. Общая схема процесса речеобразования x[n] – дискретные отсчеты сигнала возбуждения y[n] – дискретные отсчеты.
ERAMIS “Network Europe – Russia – Asia of Masters in Informatics as a Second competence” (ERAMIS) «Магистратура по информатике как вторая компетенция для.
Growing Neural Gas Method Нейросетевой метод построения неструктурированных адаптивных сеток.
Сравнение различных методов хранения XML в реляционных базах данных и в разных системах. Нгуен Тхань Хуен- 545 группа Руководитель : Б.А. Новиков Рецензент:
Сопоставление полигональных объектов на основе независимой фрагментации контуров Выполнил: Ю. М. Плотников Научный руководитель: канд. ф.-м. наук К. В.
Создание экспериментального стенда для оценки методов поиска изображений по содержанию Выполнила: Теплых М. А. Научный руководитель: Васильева Н. С. Рецензент:
Генерация вероятностных автоматов методами Reinforcement Learning Выполнил: Иринёв А. В. Руководитель: Шалыто А. А.
Оптимизация Just – in - time компилятора методом профилирования значений Соколов Андрей Владимирович, ФФ НГУ, 3 курс, Руководитель:
Применение генетического программирования для генерации автомата в задаче об «Умном муравье» Царев Ф.Н., Шалыто А.А. IV Международная научно-практическая.
Верификация автоматных программ Ремизов А.О., д.т.н., проф. Шалыто А.А.
Нахождение ориджинов в последовательности нуклеотидов Выполнил: Ромашкин Амир, 445 гр. Руководитель: Профессор АФТУ, Порозов Юрий.
ICAO Training Workshop Moscow, Применение EATMP Common Core Content в процессе разработки учебных курсов: опыт Латвии Учебный центр АНС, Латвия.
Анализ использования нескольких функций приспособленности для построения автоматов с помощью генетических алгоритмов на примере задачи «Умный муравей 3»
Применение генетических алгоритмов для генерации автоматов Мура и систем взаимодействующих автоматов Мили в задаче об «Умном муравье» А. А. Давыдов, Д.
Вычисление типов в императивных динамически типизированных языках. Михаил Калугин, студент 3 курса ММФ Научные руководители: Игорь Николаевич Скопин Андрей.
Увеличение модульности программного обеспечения на языке Java Курсовая работа студента 345 группы Абишева Тимура Маратовича Научный руководитель: Профессор.
Применение метода представления функции переходов с помощью абстрактных конечных автоматов в генетическом программировании Царев Ф. Н. Научный руководитель.
Санкт-Петербургский Государственный Университет Математико-Механический факультет Кафедра системного программирования Применение диаграмм двоичных решений.
Реализация XPath над S-выражениями 2007 Миленин Евгений, гр. 544 Кафедра Системного Программирования Математико-Механический ф-т, СПбГУ Научный руководитель:
Анализ и Проектирование качественных приложений Презентация по книге Крэга Лармана.
Методы определения параметров вращения Земли
Разработка программного обеспечения (Software Engineering)
Применение генетических алгоритмов к генерации тестов для автоматных программ Законов Андрей Юрьевич Научный руководитель: Степанов Олег Георгиевич, к.т.н.,
Разработка программного средства 3Genetic для генерации автоматов управления системами со сложным поведением Государственный контракт №
Разработка инструментария для создания нейронных сетей на мобильных платформах на примере iOS Золотухина Алина Манаев Дмитрий 445 группа Руководитель:
Моделирование систем хранения с целью уменьшения потребления энергии Научный руководитель: ассистент кафедры информатики Алиев А. А. Рецензент: ст. пр.
Разработка алгоритмов распознавания текста
Применение генетических алгоритмов для генерации тестов к олимпиадным задачам по программированию Буздалов М.В., СПбГУ ИТМО.
Объектно-ориентированное проектирование DSP-систем в телекоммуникациях Подготовил: Сергеев Виктор Николаевич СПбГУ, математико-механический Факультет,
Геоинформационные системы Чернышов Алексей Акимович.
Методы интерактивной визуализации динамики жидких и газообразных сред Костикова Елена Юрьевна, 521 гр. Научный руководитель: Игнатенко Алексей Викторович.
Место человека в интеллектуальной техносреде В.В. Бушуев, д.т.н., проф., Генеральный директор Института энергетической стратегии ЦМТ, г.
Технология верификации управляющих программ со сложным поведением, построенных на основе автоматного подхода Руководитель проекта – А. А. Шалыто Докладчик.
Мультиагентные системы и их применение в сетевых задачах Выполнил: студент 545 гр. Г.И. Вольфсон Научный руководитель: д. ф.-м. н. А.Н.Терехов 2007.
Проверка эквивалентности срединной и линейной осей многоугольника Дипломная работа студента 545 группы Подколзина Максима Валериевича Санкт-Петербургский.
«Интернет радио» Разработчик Демидко А.А. Преподаватель Бронштейн М.Е.
TMG Tel: 8 (495) Fax: 8 (477) Technology Management Group ООО «TMG» PayKeeper.
Применение генетического программирования для реализации систем со сложным поведением Санкт-Петербургский Государственный Университет Информационных Технологий,
Перенос технологии REAL-IT на платформу Microsoft.Net Нестеров Антон Научный руководитель: Иванов А.Н. Рецензент: Серебрякова Г.М.
___________________________ Грязнов В.Б. Директор по Информационным технологиям ОАО «Мосэнерго»
Графический язык описания игровых эпизодов в футболе Царев Михаил Николаевич, Царев Федор Николаевич 2008 год.
Исследование возможностей сервисной шины SonicMQ Дипломная работа студентки 545 группы Комольцевой Дарьи Владимировны Научный руководитель: Графеева Н.Г.
О понятийном аппарате Национальной системы квалификаций Российской Федерации Есенина Екатерина Юрьевна, ведущий научный сотрудник Центра профессионального.
Электрооборудование топливной системы ВС Выполнили: Нуртай Анет Исаева С Жумалиева Н Шведков И Группа: Ат-Ав-15.1 Проверила: Керибаева Т.
Presentation transcript:

Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Ф. Н. Царев, А. А. Шалыто 2007 год

2 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Автоматное программирование Предложено в России в 1991 году Программные системы предлагается разрабатывать так же, как выполняется автоматизация технологических (и не только) процессов Система управления является системой взаимодействующих конечных автоматов Состояния События и входные переменные Выходные воздействия Конечный автомат Система конечных автоматов

3 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Преимущества автоматного подхода Обладает наибольшей эффективностью для систем со сложным поведением Формальное и понятное описание поведения Автоматическая генерация кода по диаграммам переходов Возможность верификации программ Проектная документация

4 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Инструментальное средство UniMod (1) Инструментальное средство для поддержки автоматного программирования Создано в рамках ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники» на годы по приоритетному направлению «Информационно- телекоммуникационные системы» Критическая технология – «Технологии производства программного обеспечения» Вошел в число 15 наиболее инновационно перспективных и социально значимых проектов Федерального агентства по науке и инновациям

5 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Инструментальное средство UniMod (2) Семь автоматов ВручнуюАвтоматическая генерация Вручную

6 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Инструментальное средство UniMod (3) Один из автоматов – AL

7 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Решаемая проблема Основная сложность в автоматном программировании – построение автоматов В большинстве случаев автоматы проектируются вручную Однако эвристическое построение автоматов часто затруднено или невозможно Решение – автоматическое построение конечных автоматов с помощью генетического программирования

8 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Этапы решения проблемы год – исследования 1. Анализ источников и патентный поиск 2. Разработка методов и алгоритмов для генерации автоматов для систем со сложным поведением год – внедрение 1. Разработка библиотеки, реализующей разработанные методы и алгоритмы 2. Апробация результатов работы при проектировании программного обеспечения систем со сложным поведением 3. Это позволит повысить уровень автоматизации построения программ рассматриваемого класса

9 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Три рассматриваемые задачи «Простая» задача – задача об «Умном муравье» «Сложная» задача – задача «Беспилотные летательные объекты» «Народная» задача – «Разливочная линия»

10 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением «Простая» задача – задача об «Умном муравье» Тор – 32x32 89 клеток с едой 200 ходов Расположение еды и начальная позиция муравья фиксированы Цель – создать муравья, который съест всю еду Муравей = конечный автомат

11 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Эвристическое построение задачу не решает Пять состояний, за 200 ходов съедается 81 единица еды или все 89 единиц еды за 314 ходов

12 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Решение «простой» задачи Известные решения: 13 состояний (1992) 11 состояний (1993) 8 состояний (1999) Известные подходы – кодирование битовыми строками + генетический алгоритм Предлагаемый подход – генетическое программирование Построены два автомата с 7 состояниями после перебора 160 и 230 млн. автоматов Полный перебор ~3·10 18 автоматов

13 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением «Сложная» задача – задача «Беспилотные летательные объекты» Соревнование на дальность полета Две команды по восемь объектов Ограничения: запас топлива, столкновения, аэродинамическое взаимодействие Цель – разработка управляющей программы Задача заочного тура VI Открытой Всесибирской олимпиады по программированию (2005 год) Была решена при участии автора путем эвристического построения автоматов

14 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Беспилотный летательный объект Двигатель Бак с топливом Бортовой компьютер Аэродинамические рули

15 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Аэродинамическое взаимодействие Области пониженного сопротивления воздуха Области повышенного сопротивления воздуха 20° – – ++

16 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Столкновение объектов Столкновение – абсолютно упругое и описывается законами сохранения энергии и импульса При этом, если относительная скорость столкновения > 1 м/с, то оба объекта выбывают из соревнования

17 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Решение (1) Система управления = нейронная сеть + конечный автомат Нейронная сеть преобразует вещественные входные переменные в логические

18 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Решение (2) Особь = две системы управления беспилотным объектом Особь из двух систем – для учета взаимодействия объектов

19 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Решение (3) Мутация особи Мутация системы управления летательным объектом Мутация нейронной сети  Мутация элемента сети Мутация конечного автомата  Изменение начального состояния  Мутация перехода Скрещивание особей Скрещивание систем управления летающей тарелкой Скрещивание автоматов Скрещивание нейронных сетей

20 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Результаты применения генетического программирования За сутки была построена управляющая система, содержащая нейронную сеть и один автомат с шестью состояниями (вместо семи автоматов с 21 состоянием) Построенная с помощью ГП система Построенная вручную система Среднее 216,55212,59 Минимум 203,05203,44 Максимум 241,11225,09

21 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Задача: налить как можно больше бутылок за заданный промежуток времени «Народная» задача – «Разливочная линия»

22 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Решения задачи Построен вручную Построен автоматически

23 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Результаты Разработан подход к генерации автоматов для систем со сложным поведением, позволяющий повысить уровень автоматизации программирования систем этого класса Эффективность метода продемонстрирована на трех типах примеров Требуется дальнейшее совершенствование методов генетического программирования автоматов и разработка программного продукта – библиотеки для поддержки предлагаемого подхода Мировые аналоги отсутствуют (для подтверждения этого в ближайшее время будет завершен патентный поиск)

24 Царев Ф. Н. Применение генетического программирования для построения автоматов, управляющих системами со сложным поведением Спасибо за внимание!