Hierarchy Theorems. Space Hierarchy Theorem.

Slides:



Advertisements
Similar presentations
Lecture 11-1 FPGA We have finished combinational circuits, and learned registers. Now are ready to see the inside of an FPGA.
Advertisements

CDA 3100 Recitation Week 10.
Lecture 23 Space Complexity of DTM. Space Space M (x) = # of cell that M visits on the work (storage) tapes during the computation on input x. If M is.
Lecture 24 Time and Space of NTM. Time For a NDM M and an input x, Time M (x) = the minimum # of moves leading to accepting x if x ε L(M) = infinity if.
Complexity Theory Lecture 1 Lecturer: Moni Naor. Computational Complexity Theory Study the resources needed to solve computational problems –Computer.
X=0 x
Lecture 16: Relativization Umans Complexity Theory Lecturess.
Complexity class NP Is the class of languages that can be verified by a polynomial-time algorithm. L = { x in {0,1}* | there exists a certificate y with.
Complexity 15-1 Complexity Andrei Bulatov Hierarchy Theorem.
Computability and Complexity 22-1 Computability and Complexity Andrei Bulatov Hierarchy Theorem.
Complexity 13-1 Complexity Andrei Bulatov Hierarchy Theorem.
CS151 Complexity Theory Lecture 6 April 15, 2015.
1 Linear Bounded Automata LBAs. 2 Linear Bounded Automata are like Turing Machines with a restriction: The working space of the tape is the space of the.
CS 326 A: Motion Planning Criticality-Based Planning.
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
NP-Completeness CS 51 Summer 2008 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AA A A AAA.
Interconnect Network Modeling Motivation: Investigate the response of a complex interconnect network to external RF interference or internal coupling between.
CS151 Complexity Theory Lecture 2 April 3, Time and Space A motivating question: –Boolean formula with n nodes –evaluate using O(log n) space?
CS151 Complexity Theory Lecture 6 April 15, 2004.
Umans Complexity Theory Lectures Lecture 2c: EXP Complete Problem: Padding and succinctness.
February 20, 2015CS21 Lecture 191 CS21 Decidability and Tractability Lecture 19 February 20, 2015.
CS151 Complexity Theory Lecture 2 April 1, CS151 Lecture 22 Time and Space A motivating question: –Boolean formula with n nodes –evaluate using.
PolynomdivisionPolynomdivision. (x 3 – 3 x 2 – 2 x + 4) : (x – 1) =
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen.
10.2 Sequences Math 6B Calculus II. Limit of Sequences from Limits of Functions.
Machines with Memory Chapter 3 (Part B). Turing Machines  Introduced by Alan Turing in 1936 in his famous paper “On Computable Numbers with an Application.
Theory of Computing Lecture 15 MAS 714 Hartmut Klauck.
February 18, 2015CS21 Lecture 181 CS21 Decidability and Tractability Lecture 18 February 18, 2015.
Fall 2013 CMU CS Computational Complexity Lecture 3 and 4 Non-determinism, NTIME hierarchy threorem, Ladner’s Proof 9/17/2013.
Инвестиционный паспорт Муниципального образования «Целинский район»
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
Computability Chapter 5. Overview  Turing Machine (TM) considered to be the most general computational model that can be devised (Church-Turing thesis)
2.3 Polynomial Division and Synthetic Division Ex. Long Division What times x equals 6x 3 ? 6x 2 6x x 2 Change the signs and add x x.
Umans Complexity Theory Lectures Lecture 2b: A P-Complete Problem.
CSCI 3130: Formal languages and automata theory Andrej Bogdanov The Chinese University of Hong Kong The Cook-Levin.
1 How to establish NP-hardness Lemma: If L 1 is NP-hard and L 1 ≤ L 2 then L 2 is NP-hard.
Lecture 22. Time of DTM. Time of DTM Time M (x) = # of moves that DTM M takes on input x. Time M (x) < infinity iff x ε L(M).
Umans Complexity Theory Lectures Lecture 1c: Robust Time & Space Classes.
Fall 2013 CMU CS Computational Complexity Lecture 2 Diagonalization, 9/12/2013.
Lecture 2 Time and Space of DTM. Time of DTM Time M (x) = # of moves that DTM M takes on input x. Time M (x) < infinity iff x ε L(M).
Complexity ©D.Moshkovitz 1 Our First NP-Complete Problem The Cook-Levin theorem A B C.
南京菩提小组义务献血记实 时近年关, 2012 年 1 月 12 日上午,较平时冷 清的江苏省血液中心采血处忽然热闹起来, 原来是南京菩提小组的道友们集中在此集体 义务献血。
如何利用图书馆 ——— 海南师范大学图书馆( 2014 ) ——— 海南师范大学图书馆( 2014 )
Recall last lecture and Nondeterministic TMs Ola Svensson.
1 SAT SAT: Given a Boolean function in CNF representation, is there a way to assign truth values to the variables so that the function evaluates to true?
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
1 Design and Analysis of Algorithms Yoram Moses Lecture 13 June 17, 2010
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
The Church-Turing Thesis
מאת: יעקב דדוש. פיסול –בין יחיד לרבים יחידה 1 לתלמיד המתבונן לפניך שתי יצירות פיסוליות. התבונן וכתוב (בשקופית הבאה) מהם ההבדלים בין הפסלים המוצגים לפניך?
Circuit Analysis Resistors, Capacitors, Voltage sources.
ЛАТИНСКА АМЕРИКА И Колонизирането на Африка. РЕЧНИК: експанзия разширяване империализъм създаване и поддържане на неравностойни икономически, културни.
Lecture 1-2 Time and Space of DTM
A question of science Circuit Symbols
3.3: Increasing/Decreasing Functions and the First Derivative Test
Business Process Modelling
Finding polynomial roots
6.7 Geometric Application 6.8 Complex Numbers
Umans Complexity Theory Lectures
Assignment 1.
Space Complexity Costas Busch - LSU.
Recall last lecture and Nondeterministic TMs
Counter Integrated Circuits (I.C.s)
Umans Complexity Theory Lectures
Ability to attract money: 0.00 Pauling
Vector Spaces, Subspaces
Space complexity 姚鹏晖 助教: 刘明谋 答疑时间: 周四 2pm-4pm, 计算机科学与技术楼 502
Lecture 1-2 Time and Space of DTM
Presentation transcript:

Hierarchy Theorems

Space Hierarchy Theorem

Relativization

Limits of the Diagonalization Method

Circuit Complexity      x1x1 x2x2 x3x3 output

⊔ 0⊔⊔0 1 q00q00 Cell[1,1] start configuration Cell[t(n),1] Accept position t(n)-th configuration

q 0 … 0q l 1q 0 … 1q l 0 1 …     …

Monotone Circuits

12 3

Richard Rado Paul Erd ö s (3/26, 1913 – 9/20,1996 )

Plucking a sunflower      x 1 x 2 x 1 x 3 x 2 x 3   x 1 x 2 x 1 x 3 x 1 x 3 x 2 x 3  {x 1 x 2, x 1 x 3 }, { x 1 x 3, x 2 x 3 } {x 1 x 2 x 3, x 1 x 3 }

K-1 …

Z