Sequence Alignment Cont’d. Needleman-Wunsch with affine gaps Initialization:V(i, 0) = d + (i – 1)  e V(0, j) = d + (j – 1)  e Iteration: V(i, j) = max{

Slides:



Advertisements
Similar presentations
Hidden Markov Models (1)  Brief review of discrete time finite Markov Chain  Hidden Markov Model  Examples of HMM in Bioinformatics  Estimations Basic.
Advertisements

Gapped BLAST and PSI-BLAST Altschul et al Presenter: 張耿豪 莊凱翔.
Hidden Markov Model.
Rapid Global Alignments How to align genomic sequences in (more or less) linear time.
Bioinformatics Hidden Markov Models. Markov Random Processes n A random sequence has the Markov property if its distribution is determined solely by its.
Hidden Markov Models.
Profile Hidden Markov Models Bioinformatics Fall-2004 Dr Webb Miller and Dr Claude Depamphilis Dhiraj Joshi Department of Computer Science and Engineering.
 CpG is a pair of nucleotides C and G, appearing successively, in this order, along one DNA strand.  CpG islands are particular short subsequences in.
Hidden Markov Models Modified from:
Hidden Markov Model Most pages of the slides are from lecture notes from Prof. Serafim Batzoglou’s course in Stanford: CS 262: Computational Genomics (Winter.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Seeds for Similarity Search Presentation by: Anastasia Fedynak.
Sequence Alignment.
Heuristic Local Alignerers 1.The basic indexing & extension technique 2.Indexing: techniques to improve sensitivity Pairs of Words, Patterns 3.Systems.
Linear-Space Alignment. Subsequences and Substrings Definition A string x’ is a substring of a string x, if x = ux’v for some prefix string u and suffix.
Lecture 6, Thursday April 17, 2003
Hidden Markov Models. Two learning scenarios 1.Estimation when the “right answer” is known Examples: GIVEN:a genomic region x = x 1 …x 1,000,000 where.
Hidden Markov Models. Decoding GIVEN x = x 1 x 2 ……x N We want to find  =  1, ……,  N, such that P[ x,  ] is maximized  * = argmax  P[ x,  ] We.
Genomic Sequence Alignment. Overview Dynamic programming & the Needleman-Wunsch algorithm Local alignment—BLAST Fast global alignment Multiple sequence.
. Class 4: Fast Sequence Alignment. Alignment in Real Life u One of the major uses of alignments is to find sequences in a “database” u Such collections.
Hidden Markov Models Lecture 6, Thursday April 17, 2003.
Hidden Markov Models Lecture 5, Tuesday April 15, 2003.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Sequence Alignment. Scoring Function Sequence edits: AGGCCTC  MutationsAGGACTC  InsertionsAGGGCCTC  DeletionsAGG. CTC Scoring Function: Match: +m Mismatch:
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Linear-Space Alignment. Linear-space alignment Using 2 columns of space, we can compute for k = 1…M, F(M/2, k), F r (M/2, N – k) PLUS the backpointers.
CpG islands in DNA sequences
Hidden Markov Models Lecture 5, Tuesday April 15, 2003.
Sequence Alignment.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Hidden Markov Models K 1 … 2. Outline Hidden Markov Models – Formalism The Three Basic Problems of HMMs Solutions Applications of HMMs for Automatic Speech.
Sequence Alignment Lecture 2, Thursday April 3, 2003.
Time Warping Hidden Markov Models Lecture 2, Thursday April 3, 2003.
Alignments and Comparative Genomics. Welcome to CS374! Today: Serafim: Alignments and Comparative Genomics Omkar: Administrivia.
Index-based search of single sequences Omkar Mate CS 374 Stanford University.
Sequence Alignment Cont’d. Evolution Scoring Function Sequence edits: AGGCCTC  Mutations AGGACTC  Insertions AGGGCCTC  Deletions AGG.CTC Scoring Function:
Indexed Alignment Tricks of the Trade Ross David Bayer 18 th October, 2005 Note: many diagrams taken from Serafim’s CS 262 class.
Bioinformatics Hidden Markov Models. Markov Random Processes n A random sequence has the Markov property if its distribution is determined solely by its.
CS 6293 Advanced Topics: Current Bioinformatics Lectures 3-4: Pair-wise Sequence Alignment.
Sequence Alignment Cont’d. Linear-space alignment Iterate this procedure to the left and right! N-k * M/2 k*k*
Hidden Markov Models.
CS262 Lecture 4, Win07, Batzoglou Heuristic Local Alignerers 1.The basic indexing & extension technique 2.Indexing: techniques to improve sensitivity Pairs.
Doug Downey, adapted from Bryan Pardo,Northwestern University
Sequence Alignment Cont’d. CS262 Lecture 4, Win06, Batzoglou Indexing-based local alignment (BLAST- Basic Local Alignment Search Tool) 1.SEED Construct.
CS262 Lecture 5, Win07, Batzoglou Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
“Multiple indexes and multiple alignments” Presenting:Siddharth Jonathan Scribing:Susan Tang DFLW:Neda Nategh Upcoming: 10/24:“Evolution of Multidomain.
Sequence Alignment. CS262 Lecture 3, Win06, Batzoglou Sequence Alignment -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC Definition.
Practical algorithms in Sequence Alignment Sushmita Roy BMI/CS 576 Sep 17 th, 2013.
Alignment Statistics and Substitution Matrices BMI/CS 576 Colin Dewey Fall 2010.
BLAT – The B LAST- L ike A lignment T ool Kent, W.J. Genome Res : Presenter: 巨彥霖 田知本.
BINF6201/8201 Hidden Markov Models for Sequence Analysis
Gapped BLAST and PSI- BLAST: a new generation of protein database search programs By Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui.
Indexing DNA sequences for local similarity search Joint work of Angela, Dr. Mamoulis and Dr. Yiu 17/5/2007.
PatternHunter II: Highly Sensitive and Fast Homology Search Bioinformatics and Computational Molecular Biology (Fall 2005): Representation R 林語君.
CS5263 Bioinformatics Lecture 10: Markov Chain and Hidden Markov Models.
BLAST: Basic Local Alignment Search Tool Altschul et al. J. Mol Bio CS 466 Saurabh Sinha.
Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
Pairwise Local Alignment and Database Search Csc 487/687 Computing for Bioinformatics.
CS 5263 Bioinformatics Lecture 7: Heuristic Sequence Alignment Algorithms (BLAST)
Pairwise Sequence Alignment Part 2. Outline Summary Local and Global alignments FASTA and BLAST algorithms Evaluating significance of alignments Alignment.
Doug Raiford Phage class: introduction to sequence databases.
CS 5263 Bioinformatics Lecture 7: Heuristic Sequence Alignment Tools (BLAST) Multiple Sequence Alignment.
Eric Xing © Eric CMU, Machine Learning Structured Models: Hidden Markov Models versus Conditional Random Fields Eric Xing Lecture 13,
More on HMMs and Multiple Sequence Alignment BMI/CS 776 Mark Craven March 2002.
Hidden Markov Models – Concepts 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2.
CSCI2950-C Lecture 2 September 11, Comparative Genomic Hybridization (CGH) Measuring Mutations in Cancer.
CS 6293 Advanced Topics: Translational Bioinformatics
Homology Search Tools Kun-Mao Chao (趙坤茂)
Hidden Markov Model ..
CSE 5290: Algorithms for Bioinformatics Fall 2009
Presentation transcript:

Sequence Alignment Cont’d

Needleman-Wunsch with affine gaps Initialization:V(i, 0) = d + (i – 1)  e V(0, j) = d + (j – 1)  e Iteration: V(i, j) = max{ F(i, j), G(i, j), H(i, j) } F(i, j) = V(i – 1, j – 1) + s(x i, y j ) V(i – 1, j) – d G(i, j) = max G(i – 1, j) – e V(i, j – 1) – d H(i, j) = max H(i, j – 1) – e Termination: similar HINT: With similar idea we can do arbitrary (non-convex) gaps

Linear-space alignment Iterate this procedure to the left and right! N-k * M/2 k*k*

The Four-Russian Algorithm t t t

Heuristic Local Alignerers 1.The basic indexing & extension technique 2.Indexing: techniques to improve sensitivity Pairs of Words, Patterns 3.Systems for local alignment

State of biological databases

State of biological databases Number of genes in these genomes:  Mammals: ~25,000  Insects: ~14,000  Worms: ~17,000  Fungi: ~6,000-10,000  Small organisms: 100s-1,000s Each known or predicted gene has one or more associated protein sequences >1,000,000 known / predicted protein sequences

Some useful applications of alignments Given a newly discovered gene,  Does it occur in other species?  How fast does it evolve? Assume we try Smith-Waterman: The entire genomic database Our new gene

Some useful applications of alignments Given a newly sequenced organism, Which subregions align with other organisms?  Potential genes  Other biological characteristics Assume we try Smith-Waterman: The entire genomic database Our newly sequenced mammal 3 

Indexing-based local alignment (BLAST- Basic Local Alignment Search Tool) Main idea: 1.Construct a dictionary of all the words in the query 2.Initiate a local alignment for each word match between query and DB Running Time: O(MN) However, orders of magnitude faster than Smith-Waterman query DB

Indexing-based local alignment Dictionary: All words of length k (~10) Alignment initiated between words of alignment score  T (typically T = k) Alignment: Ungapped extensions until score below statistical threshold Output: All local alignments with score > statistical threshold …… query DB query scan

Indexing-based local alignment— Extensions A C G A A G T A A G G T C C A G T C C C T T C C T G G A T T G C G A Example: k = 4 The matching word GGTC initiates an alignment Extension to the left and right with no gaps until alignment falls < T below best so far Output: GTAAGGTCC GTTAGGTCC

Indexing-based local alignment— Extensions A C G A A G T A A G G T C C A G T C T G A T C C T G G A T T G C G A Gapped extensions Extensions with gaps in a band around anchor Output: GTAAGGTCCAGT GTTAGGTC-AGT

Indexing-based local alignment— Extensions A C G A A G T A A G G T C C A G T C T G A T C C T G G A T T G C G A Gapped extensions until threshold Extensions with gaps until score < T below best score so far Output: GTAAGGTCCAGT GTTAGGTC-AGT

Indexing-based local alignment—The index Sensitivity/speed tradeoff long words (k = 15) short words (k = 7) Sensitivity Speed Kent WJ, Genome Research 2002 Sens. Speed

Indexing-based local alignment—The index Methods to improve sensitivity/speed 1.Using pairs of words 2.Using inexact words 3.Patterns—non consecutive positions ……ATAACGGACGACTGATTACACTGATTCTTAC…… ……GGCACGGACCAGTGACTACTCTGATTCCCAG…… ……ATAACGGACGACTGATTACACTGATTCTTAC…… ……GGCGCCGACGAGTGATTACACAGATTGCCAG…… TTTGATTACACAGAT T G TT CAC G

Measured improvement Kent WJ, Genome Research 2002

Non-consecutive words—Patterns Patterns increase the likelihood of at least one match within a long conserved region 3 common 5 common 7 common Consecutive PositionsNon-Consecutive Positions 6 common On a 100-long 70% conserved region: Consecutive Non-consecutive Expected # hits: Prob[at least one hit]:

Advantage of Patterns 11 positions 10 positions

Multiple patterns K patterns  Takes K times longer to scan  Patterns can complement one another Computational problem:  Given: a model (prob distribution) for homology between two regions  Find: best set of K patterns that maximizes Prob(at least one match) TTTGATTACACAGAT T G TT CAC G T G T C CAG TTGATT A G Buhler et al. RECOMB 2003 Sun & Buhler RECOMB 2004 How long does it take to search the query?

Variants of BLAST NCBI BLAST: search the universe MEGABLAST:  Optimized to align very similar sequences Works best when k = 4i  16 Linear gap penalty WU-BLAST: (Wash U BLAST)  Very good optimizations  Good set of features & command line arguments BLAT  Faster, less sensitive than BLAST  Good for aligning huge numbers of queries CHAOS  Uses inexact k-mers, sensitive PatternHunter  Uses patterns instead of k-mers BlastZ  Uses patterns, good for finding genes

Example Query: gattacaccccgattacaccccgattaca (29 letters) [2 mins] Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or phase 0, 1 or 2 HTGS sequences) 1,726,556 sequences; 8,074,398,388 total letters >gi| |gb|AC | Oryza sativa chromosome 3 BAC OSJNBa0087C10 genomic sequence, complete sequence Length = Score = 34.2 bits (17), Expect = 4.5 Identities = 20/21 (95%) Strand = Plus / Plusgi| |gb|AC | Query: 4 tacaccccgattacaccccga 24 ||||||| ||||||||||||| Sbjct: tacacccagattacaccccga Score = 34.2 bits (17), Expect = 4.5 Identities = 20/21 (95%) Strand = Plus / Plus Query: 4 tacaccccgattacaccccga 24 ||||||| ||||||||||||| Sbjct: tacacccagattacaccccga >gi| |gb|AC | Oryza sativa chromosome 3 BAC OSJNBa0052F07 genomic sequence, complete sequence Length = Score = 34.2 bits (17), Expect = 4.5 Identities = 20/21 (95%) Strand = Plus / Plusgi| |gb|AC | Query: 4 tacaccccgattacaccccga 24 ||||||| ||||||||||||| Sbjct: 3891 tacacccagattacaccccga 3911

Example Query: Human atoh enhancer, 179 letters[1.5 min] Result: 57 blast hits 1. gi| |gb|AF |AF Homo sapiens ATOH1 enhanc e-95 gi| |gb|AF |AF gi| |gb|AC | Mus musculus Strain C57BL6/J ch e-68gi| |gb|AC |264 3.gi| |gb|AF |AF Mus musculus Atoh1 enhanc e-66gi| |gb|AF |AF gi| |gb|AF | Gallus gallus CATH1 (CATH1) gene e-12gi| |gb|AF |78 5.gi| |emb|AL | Zebrafish DNA sequence from clo e-05gi| |emb|AL |54 6.gi| |gb|AC | Oryza sativa chromosome 10 BAC O gi| |gb|AC |44 7.gi| |ref|NM_ | Mus musculus suppressor of Ty gi| |ref|NM_ |42 8.gi| |gb|BC | Mus musculus, Similar to suppres gi| |gb|BC |42 gi| |gb|AF |AF218258gi| |gb|AF |AF Mus musculus Atoh1 enhancer sequence Length = 1517 Score = 256 bits (129), Expect = 9e-66 Identities = 167/177 (94%), Gaps = 2/177 (1%) Strand = Plus / Plus Query: 3 tgacaatagagggtctggcagaggctcctggccgcggtgcggagcgtctggagcggagca 62 ||||||||||||| ||||||||||||||||||| |||||||||||||||||||||||||| Sbjct: 1144 tgacaatagaggggctggcagaggctcctggccccggtgcggagcgtctggagcggagca 1203 Query: 63 cgcgctgtcagctggtgagcgcactctcctttcaggcagctccccggggagctgtgcggc 122 |||||||||||||||||||||||||| ||||||||| |||||||||||||||| ||||| Sbjct: 1204 cgcgctgtcagctggtgagcgcactc-gctttcaggccgctccccggggagctgagcggc 1262 Query: 123 cacatttaacaccatcatcacccctccccggcctcctcaacctcggcctcctcctcg 179 ||||||||||||| || ||| |||||||||||||||||||| ||||||||||||||| Sbjct: 1263 cacatttaacaccgtcgtca-ccctccccggcctcctcaacatcggcctcctcctcg 1318

Hidden Markov Models 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2

Outline for our next topic Hidden Markov models – the theory Probabilistic interpretation of alignments using HMMs Later in the course: Applications of HMMs to biological sequence modeling and discovery of features such as genes

Example: The Dishonest Casino A casino has two dice: Fair die P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 Loaded die P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = 1/2 Casino player switches back-&-forth between fair and loaded die once every 20 turns Game: 1.You bet $1 2.You roll (always with a fair die) 3.Casino player rolls (maybe with fair die, maybe with loaded die) 4.Highest number wins $2

Question # 1 – Evaluation GIVEN A sequence of rolls by the casino player QUESTION How likely is this sequence, given our model of how the casino works? This is the EVALUATION problem in HMMs

Question # 2 – Decoding GIVEN A sequence of rolls by the casino player QUESTION What portion of the sequence was generated with the fair die, and what portion with the loaded die? This is the DECODING question in HMMs

Question # 3 – Learning GIVEN A sequence of rolls by the casino player QUESTION How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back? This is the LEARNING question in HMMs

The dishonest casino model FAIRLOADED P(1|F) = 1/6 P(2|F) = 1/6 P(3|F) = 1/6 P(4|F) = 1/6 P(5|F) = 1/6 P(6|F) = 1/6 P(1|L) = 1/10 P(2|L) = 1/10 P(3|L) = 1/10 P(4|L) = 1/10 P(5|L) = 1/10 P(6|L) = 1/2

Definition of a hidden Markov model Definition: A hidden Markov model (HMM) Alphabet  = { b 1, b 2, …, b M } Set of states Q = { 1,..., K } Transition probabilities between any two states a ij = transition prob from state i to state j a i1 + … + a iK = 1, for all states i = 1…K Start probabilities a 0i a 01 + … + a 0K = 1 Emission probabilities within each state e i (b) = P( x i = b |  i = k) e i (b 1 ) + … + e i (b M ) = 1, for all states i = 1…K K 1 … 2

A HMM is memory-less At each time step t, the only thing that affects future states is the current state  t P(  t+1 =k | “whatever happened so far”) = P(  t+1 =k |  1,  2, …,  t, x 1, x 2, …, x t )= P(  t+1 =k |  t ) K 1 … 2

A parse of a sequence Given a sequence x = x 1 ……x N, A parse of x is a sequence of states  =  1, ……,  N 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2

Likelihood of a parse Given a sequence x = x 1 ……x N and a parse  =  1, ……,  N, To find how likely is the parse: (given our HMM) P(x,  ) = P(x 1, …, x N,  1, ……,  N ) = P(x N,  N |  N-1 ) P(x N-1,  N-1 |  N-2 )……P(x 2,  2 |  1 ) P(x 1,  1 ) = P(x N |  N ) P(  N |  N-1 ) ……P(x 2 |  2 ) P(  2 |  1 ) P(x 1 |  1 ) P(  1 ) = a 0  1 a  1  2 ……a  N-1  N e  1 (x 1 )……e  N (x N ) 1 2 K … 1 2 K … 1 2 K … … … … 1 2 K … x1x1 x2x2 x3x3 xKxK 2 1 K 2

Example: the dishonest casino Let the sequence of rolls be: x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4 Then, what is the likelihood of  = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair? (say initial probs a 0Fair = ½, a oLoaded = ½) ½  P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) = ½  (1/6) 10  (0.95) 9 = = 0.5  10 -9

Example: the dishonest casino So, the likelihood the die is fair in all this run is just  OK, but what is the likelihood of  = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded? ½  P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) = ½  (1/10) 8  (1/2) 2 (0.95) 9 = = 0.79  Therefore, it somewhat more likely that the die is fair all the way, than that it is loaded all the way

Example: the dishonest casino Let the sequence of rolls be: x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6 Now, what is the likelihood  = F, F, …, F? ½  (1/6) 10  (0.95) 9 = 0.5  10 -9, same as before What is the likelihood  = L, L, …, L? ½  (1/10) 4  (1/2) 6 (0.95) 9 = = 0.5  So, it is 100 times more likely the die is loaded

The three main questions on HMMs 1.Evaluation GIVEN a HMM M, and a sequence x, FIND Prob[ x | M ] 2.Decoding GIVENa HMM M, and a sequence x, FINDthe sequence  of states that maximizes P[ x,  | M ] 3.Learning GIVENa HMM M, with unspecified transition/emission probs., and a sequence x, FINDparameters  = (e i (.), a ij ) that maximize P[ x |  ]

Let’s not be confused by notation P[ x | M ]: The probability that sequence x was generated by the model The model is: architecture (#states, etc) + parameters  = a ij, e i (.) So, P[x | M] is the same with P[ x |  ], and P[ x ], when the architecture, and the parameters, respectively, are implied Similarly, P[ x,  | M ], P[ x,  |  ] and P[ x,  ] are the same when the architecture, and the parameters, are implied In the LEARNING problem we always write P[ x |  ] to emphasize that we are seeking the  * that maximizes P[ x |  ]