1 Lecture 13 Modeling Curved Lines and Surfaces. 2 Types of Surfaces Ruled Surfaces B-Splines and Bezier Curves Surfaces of Revolution.

Slides:



Advertisements
Similar presentations
SI23 Introduction to Computer Graphics
Advertisements

Lecture Notes #11 Curves and Surfaces II
Computer Graphics (Spring 2008) COMS 4160, Lecture 6: Curves 1
Advanced Computer Graphics (Spring 2005) COMS 4162, Lecture 13: NURBs, Spline Surfaces Ravi Ramamoorthi Some material.
Cubic Curves CSE167: Computer Graphics Instructor: Steve Rotenberg UCSD, Fall 2006.
ICS 415 Computer Graphics Bézier Splines (Chapter 8)
© University of Wisconsin, CS559 Spring 2004
Jehee Lee Seoul National University
B-Spline Blending Functions
1 Curves and Surfaces. 2 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized.
Slide 127 October 1999CS Computer Graphics (Top Changwatchai) Review of Spline Concepts Sections 10-6 to in Hearn & Baker Splines can be 2D.
Lecture 29 of 42 Bezier Curves and Splines Wednesday, 02 April 2008
MIT EECS 6.837, Durand and Cutler Curves & Surfaces.
Informationsteknologi Monday, December 10, 2007Computer Graphics - Class 161 Today’s class Curve fitting Evaluators Surfaces.
Rational Bezier Curves
09/04/02 Dinesh Manocha, COMP258 Bezier Curves Interpolating curve Polynomial or rational parametrization using Bernstein basis functions Use of control.
Advanced Computer Graphics (Spring 2005) COMS 4162, Lecture 12: Spline Curves (review) Ravi Ramamoorthi Most material.
Modelling. Outline  Modelling methods  Editing models – adding detail  Polygonal models  Representing curves  Patched surfaces.
Cubic Bezier and B-Spline Curves
Bezier and Spline Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
Modelling: Curves Week 11, Wed Mar 23
RASTER CONVERSION ALGORITHMS FOR CURVES: 2D SPLINES 2D Splines - Bézier curves - Spline curves.
Bezier and Spline Curves and Surfaces CS4395: Computer Graphics 1 Mohan Sridharan Based on slides created by Edward Angel.
Curve Surfaces June 4, Examples of Curve Surfaces Spheres The body of a car Almost everything in nature.
Splines III – Bézier Curves
Curve Modeling Bézier Curves
Bresenham’s Algorithm. Line Drawing Reference: Edward Angel’s book: –6 th Ed. Sections 6.8 and 6.9 Assuming: –Clipped (to fall within the window) –2D.
11/19/02 (c) 2002, University of Wisconsin, CS 559 Last Time Many, many modeling techniques –Polygon meshes –Parametric instancing –Hierarchical modeling.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
A D V A N C E D C O M P U T E R G R A P H I C S CMSC 635 January 15, 2013 Spline curves 1/23 Curves and Surfaces.
(Spline, Bezier, B-Spline)
V. Space Curves Types of curves Explicit Implicit Parametric.
Introduction to Computer Graphics with WebGL
1 Dr. Scott Schaefer Smooth Curves. 2/109 Smooth Curves Interpolation  Interpolation through Linear Algebra  Lagrange interpolation Bezier curves B-spline.
Review of Interpolation. A method of constructing a function that crosses through a discrete set of known data points.
Vector Computer Graphic. Vector entities Line Circle, Ellipse, arc,… Curves: Spline, Bezier’s curve, … … Areas Solids Models.
Quadratic Surfaces. SPLINE REPRESENTATIONS a spline is a flexible strip used to produce a smooth curve through a designated set of points. We.
Chapter VI Parametric Curves and Surfaces
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
CS 445/645 Fall 2001 Splines/Film/Animation. Final Exam Thursday, December 13 th from 7 – 10 p.m. –Room Olsson 011 You may use one sheet of notes (8.5.
Splines IV – B-spline Curves based on: Michael Gleicher: Curves, chapter 15 in Fundamentals of Computer Graphics, 3 rd ed. (Shirley & Marschner) Slides.
Parametric Surfaces Define points on the surface in terms of two parameters Simplest case: bilinear interpolation s t s x(s,t)x(s,t) P 0,0 P 1,0 P 1,1.
Computer Graphics Representing Curves and Surfaces.
Geometric Modelling 2 INFO410 & INFO350 S Jack Pinches
CS 376 Introduction to Computer Graphics 04 / 25 / 2007 Instructor: Michael Eckmann.
Representation of Curves & Surfaces Prof. Lizhuang Ma Shanghai Jiao Tong University.
Announcements Saturday, September 29 at 9:30 in Cummings 308: Botanical Illustration: The Marriage of Art and Science by Wendy Hollender Wednesday class.
Curves: ch 4 of McConnell General problem with constructing curves: how to create curves that are “smooth” CAD problem Curves could be composed of segments.
Rendering Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Angel:
Computer Graphics (Fall 2003) COMS 4160, Lecture 10: Curves 1 Ravi Ramamoorthi
11/26/02(C) University of Wisconsin Last Time BSplines.
Parametric Curves CS 318 Interactive Computer Graphics John C. Hart.
1 Graphics CSCI 343, Fall 2015 Lecture 34 Curves and Surfaces III.
Splines Sang Il Park Sejong University. Particle Motion A curve in 3-dimensional space World coordinates.
Introduction to Curves
Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 12: Curves 1
Computing & Information Sciences Kansas State University Lecture 30 of 42CIS 636/736: (Introduction to) Computer Graphics Lecture 30 of 42 Wednesday, 09.
Rendering Bezier Curves (1) Evaluate the curve at a fixed set of parameter values and join the points with straight lines Advantage: Very simple Disadvantages:
CS559: Computer Graphics Lecture 33: Shape Modeling Li Zhang Spring 2008.
Curves University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Tamara Munzner.
Object Modeling: Curves and Surfaces CEng 477 Introduction to Computer Graphics.
Introduction to Parametric Curve and Surface Modeling.
© University of Wisconsin, CS559 Spring 2004
CS5500 Computer Graphics May 11, 2006
CSE 167 [Win 17], Lecture 9: Curves 1 Ravi Ramamoorthi
Rendering Curves and Surfaces
© University of Wisconsin, CS559 Spring 2004
Three-Dimensional Object Representation
Introduction to Parametric Curve and Surface Modeling
Type to enter a caption. Computer Graphics Week 10 Lecture 2.
Presentation transcript:

1 Lecture 13 Modeling Curved Lines and Surfaces

2 Types of Surfaces Ruled Surfaces B-Splines and Bezier Curves Surfaces of Revolution

3 Ruled Surfaces A ruled surface is defined by two “end curves” P 0 (u) and P 1 (u), that are connected by a straight line at each different value of u. –Formula: P(u, v) = (1-v) P 0 (u) + vP 1 (u)

4 Bezier Curves A Bezier curve was originally developed in the 1960’s by French engineer, Pierre Bezier, who used them for the body design of the Renault car. Bezier curves are used in computer graphics to produce curves which appear reasonably smooth at all scales.

5 Bezier Curves Bezier curves are constructed as a sequence of cubic segment in which the interpolating polynomials depend on certain control point. This means to each set of four point (P0, P1, P2, P3) we associate a curve with three main properties.

6 Bezier Curve 1. The curve starts at P0 and ends at P3. 2. When the curve starts from P0 is heads directly towards P1, and when it arrives at P3 it is coming from direction P2. 3. The entire curve is contained in a quadrilateral whose corners are the four given points (their convex hull).

7 Bezier Curves

8

9 If there is only one control point P0 then B(u) = P0 for all u. If there are only two control points P0 and P1 then the formula reduces to a line segment between the two control points.

10 Bezier Curves Adding multiple control points at a single position in space will add more weight to that point “pulling” the curve towards it. Bezier curves have wide applications because they are easy to compute and very stable. There are similar formulations, also called Bezier curves, which may behave differently.

11 Bezier Curves The degree of the curve is one less than the number of control points, so it is a quadratic for 3 control point.

12 Bezier Curves The curve always passes through the end points and is tangent to the line between the last two and first two control points.

13 Bezier Curves The curve always list with the convex hull of the control points.

14 Bezier Curves Closed curves are generated by specifying the first point the same as the last point. If the tangent at the first point and last point match the the curve is closed with first order continuity.

15 Bezier Curves Bezier curves are used almost exclusively for creating curvilinear shapes in all fields of design, from purely technical plans and blueprints to the most creative artistic genres.

16 Bezier Splines Linear Bezier spline is obtained by linear interpolation between two control points P0 and P1. Quadratic Bezier spline is obtained by de Casteljau algorithm as a linear interpolation between control points P0, P1, and P2.

17 Bezier Splines Cubic Bezier spline can also be determined by deCasteljau algorithm to interpolate a curve between (n + 1) control points P0 to P(n).

18 Bezier Splines Linear Bezier spline P(t) = (1-t)P 0 + tP 1, 0 <= t <= 1

19 Bezier Splines Quadratic Bezier spline. P 0 1 = (1-t)P 0 + tP 1, P 1 1 = (1-t)P 1 + tP 2 P(t) = (1-t)P tP 1 1 = (1-t)[(1-t)P 0 + tP 1 ] + t[(1-t)P 1 + tP 2 ] = (1-t) 2 P 0 + 2(1-t)tP 1 + t 2 P 2, or P(t) =  i=0,2 B i 2 (t) P i, where B i n (t) are Bernstein polynomials

20 Bezier Splines Cubic Bezier spline.

21 Bezier Splines To plot a Bezier Spline use the DeCasteljau iterations: P i j = (1-t)P i j-1 + tP i+1 j-1, j = 1, n i = 0, n-j for n = 3

22 Bezier Curves

23 Surfaces Of Revolution This is done with relation to a B-spline curve that represents a profile of the object you are modeling. The surface is formed when a profile is swept about the z-axis. The resulting surface has the parametric form: – P(u, v) = (X (v) cos(u), X(v) sin(u), Z(v)).

24 Modeling a Teapot This model was done by Martin Newell. –He decided to break the teapot body down into three parts, each a separate Bezier curve based on 10 points. 1 st part is points 0,1,2,3 2 nd part is 3, 3, 4, 5, 6 3 rd part 6, 7, 8, 9. –Last segment of each curve is collinear with the first segment of next curve to ensure the Bezier curves blend together.

25 Body of a Teapot iXZ

26 Bezier Surface Patches More complex, replace the u from the original Bezier equation with another Bezier equation, that has four specified control points which define the control polyhedron (which determines the shape of the patch). –This is a tensor product form surface.

27 Bezier Patch

28 Matching Bezier Patches Since the “boundary” Bezier curve is determined by the boundary polygon of the control polyhedron, it can be simple to make two patches meet at points along a common boundary. –Each pair of polyhedron edges that meet at the boundary must be collinear.

29 Modeling the rest of the Pot Both the handle and the spout are composed of four Bezier patches. –Handles surface is symmetrical about the xz-plane. The handle is then designed like another object, with an upper positive y section being composed of 16 control points, and a lower positive y section also with 16 control points.

30 Other Modeling types B-spline Patches –Alternate technique to be used in the tensor form surfaces NURBS surfaces –Nonuniform rational B-splines

31 NURBS –A rational spline curve is similar to the normal B-spline counterpart, but adds a slightly different set of blending functions, weights, to add shape and control. Advantage to NURBS is that with properly chosen points and weights you can get a exact conic section. (non-rational can only approximate)

32 NURBS NURBS are invariant among more classes of transformations unlike normal B-spline curves. –This means you can draw a perspective projection of the NURB curve much easier and more efficiently.