1 Mar. 26 SQM2006 J.H. Lee (BNL) Recent Results from BRAHMS J.H. Lee Physics Department Brookhaven National Laboratory For the Collaboration March Mostly Strangeness
2 Mar. 26 SQM2006 J.H. Lee (BNL) Short Introduction BRAHMS in “1 page” What have we learned so far? Selected Published + Preliminary Results Outlook/Summary
3 Mar. 26 SQM2006 J.H. Lee (BNL) Forward Physics in R.H.I. Collisions: Mapping Space-time Evolution Forward Physics in R.H.I. Collisions: Mapping Space-time Evolution Formation of Hot Matter, QGP? - Identifying and Characterizing the Hot Matter - How does the system extend/develop? Transverse and longitudinal dynamics - Strong constraints for theoretical modeling/interpretation Initial Conditions/Partonic Dynamics: High-p T vs y Collective Hydro-dynamics: Flow (radial and elliptic) vs y: “Viscometer” Thermodynamic and freeze-out properties: Temperatures, Ratios, HBT vs y Baryon Transport: Net-baryon vs y Bulk Properties: multiplicity, dN/dy
4 Mar. 26 SQM2006 J.H. Lee (BNL) Braod RAnge Hadron Magnetic Spectrometers Designed to study nuclear reactions in broad kinematic range (y-p T ) 2 movable spectrometers with small solid angle measuring charged identified hardrons precisely Centrality detectors (Si+Scintillator Tiles) to characterize events 53 people from 12 institutions from 5 countries FS PID using RICH Multiple settings
5 Mar. 26 SQM2006 J.H. Lee (BNL) Au+Au 200 GeV 0-5% Central Baryon Transport: How much energy available from the collision? AGS->RHIC : Stopping -> Transparency Rapidity Loss : 2±0.4: not linearly increase with y beam Energy loss per nucleon: 73±6 GeV Available energy for excitation: ~3/4 of total energy PRL (2004) Net-proton in p+p H. Yang, Symposium
6 Mar. 26 SQM2006 J.H. Lee (BNL) Rapidity Dependent Kaon Balence: “Net”-kaon (K + -K - ) longitudinal net-kaon evolution similar as net-proton in |y|< 3 at RHIC 200 GeV) strong “association”: net-kaon / net-lambda /net-proton?
7 Mar. 26 SQM2006 J.H. Lee (BNL) Baryon/meson (p/ +,pbar/ - ) at √s = 200 GeV Scale with, independent of system at =0 and 3.2 Decrease with rapidity and increase with and p T (flow, medium effect) Ratio independent of centrality proton dominates at y~3: R(p/ y~3 ~ 2* R(p/ y~0 for central AuAu, CuCu and pp: baryon transport pbar at y~3: R(pbar/ y~3 ~ 0.5* R(p/ y~0
8 Mar. 26 SQM2006 J.H. Lee (BNL) d+Au s NN =200GeV s NN =19.4GeV Au+Au s NN =200GeV Limiting Fragmentation: Longitudinal Scaling PRL 94 (2005) PRL 88 (2002) Particle production independent of beam energy near beam rapidity: Limiting fragmentation behavior “Crucial Observation” (L.M.) for universal QCD
9 Mar. 26 SQM2006 J.H. Lee (BNL) Limiting Fragmentation of pion and Kaon BRAHMS/RHIC + SPS + AGS --
10 Mar. 26 SQM2006 J.H. Lee (BNL) “Extended” Longitudinal Scaling for for K - PHOBOS PRL 94 (2005) BRAHMS Preliminary K - decreases with rapidity Longitudinal Scaling in all available rapidity ranges driving Hydro
11 Mar. 26 SQM2006 J.H. Lee (BNL) 200GeV 63 GeV Energy dependent K/ for central AuAu K/ : No surprises at 63 GeV 200 and 63 GeV: Similar rapidity dependence
12 Mar. 26 SQM2006 J.H. Lee (BNL) K/ vs p T at ~3.2 at √s = 200 GeV K/ increase with system size K/ increase with p T (~ < 2GeV/c) at forward
13 Mar. 26 SQM2006 J.H. Lee (BNL) Flowing at Forward v2 for pion Understanding missing low-pt fraction is important for integrated v2 from FS Kaon and proton v2 will come: Statistically Challenging v2(y~0) ~ v2(y~3) for 0.5<p T <2 GeV/c
14 Mar. 26 SQM2006 J.H. Lee (BNL) At the RHIC energies, hard scattering processes at high-p T become important Partons are expected to loose energy in the dense matter Different rapidities provide different densities of the medium: Sensitive to the dynamics “Dialing” initial condition channel Largest medium effect at mid- rapidity (“Scale” to multiplicity)? Rapidity dependent high-p T suppression factors: provide information on dynamical medium effect at fixed time y~0 high-y Rapidity Dependent High-p T Measurement BRAHMS NA49 AGS
15 Mar. 26 SQM2006 J.H. Lee (BNL) pp at forward : more then reference spectra NLO pQCD describes data at forward rapidity at 200 GeV K- are described best by KKP (Kniehl-Kramer-Potter) than Kretzer (NLO pQCD Calculations done by W. Vogelsang) p T (GeV/c) BRAHMS Preliminary
16 Mar. 26 SQM2006 J.H. Lee (BNL) Energy and System Dependent Nuclear Modification Factors at ~0 and 1 R AuAu (200 GeV) < R AuAu (63 GeV) < R CuCu (63 GeV) for charged hadrons Pp at 63 GeV is ISR Data (NPB100), RHIC-Run6 will provide better reference
17 Mar. 26 SQM2006 J.H. Lee (BNL) Nuclear Modification Factors (Rcp, R AuAu ) for ,K,p at y~3.1 Suppression for pions and Kaons: R AuAu : <K<p R AuAu ≠ Rcp (, for 40-60% ~ 70,56)
18 Mar. 26 SQM2006 J.H. Lee (BNL) R AuAu (Y=0) ~ R AuAu (y~3) for 0-10% Central at √s = 200 GeV R AuAu (Y=0) ~ R AuAu (y~3) for pions and protons: Accidental? Rapidity dependent interplay of Medium effect + Hydro + baryon transport
19 Mar. 26 SQM2006 J.H. Lee (BNL) RdAu Update: Identified Particle RdAu at y~3 RdAu of identified particle consistent with published h- results dAu( -)/dAu( +): Valance quark isospin dominates in pp? BRAHMS Preliminary + blue - red
20 Mar. 26 SQM2006 J.H. Lee (BNL) System, Energy dependent - Strangeness production - Freeze-out chemistry Turning off the medium effect in Rapidity, Energy, Species? - R cp, R AA at higher-rapidity ~3.5 for Kaon Universal (QCD) property at forward? Saturation – Fragmentation - “Complete” rapidity and p T -dependent kaon measurement for pp, dA, AA Longitudinal (partonic) dynamics of strangeness: - rapidity, pt, centrality, reaction-plane dependent kaon yield,ratios - v2 vs y for kaons pQCD vs forward kaons in pp Strangeness spin physics also: - Transverse single spin Asymmetries for K at “high”-x F Strangeness Physics from 5 years of BRAHMS running
21 Mar. 26 SQM2006 J.H. Lee (BNL) Non-hadronic energy loss through the medium in |y|<3: High energy density >> nuclear density - y TeV left for particle production Strong transverse/elliptic flow in y<3 (local) Chemical equilibration Onset of gluon saturation? Summary Limiting fragmentation
22 Mar. 26 SQM2006 J.H. Lee (BNL) BRAHMS White Paper
23 Mar. 26 SQM2006 J.H. Lee (BNL) I.Arsene 7, I.G. Bearden 6, D. Beavis 1, S. Bekele 6, C. Besliu 9, B. Budick 5, H. Bøggild 6, C. Chasman 1, C. H. Christensen 6, P. Christiansen 6, R. Clarke 9, R.Debbe 1, J. J. Gaardhøje 6, K. Hagel 7, H. Ito 10, A. Jipa 9, J. I. Jordre 9, F. Jundt 2, E.B. Johnson 10, C.E.Jørgensen 6, R. Karabowicz 3, E. J. Kim 4, T.M.Larsen 11, J. H. Lee 1, Y. K. Lee 4, S.Lindal 11, G. Løvhøjden 2, Z. Majka 3, M. Murray 10, J. Natowitz 7, B.S.Nielsen 6, D. Ouerdane 6, R.Planeta 3, F. Rami 2, C. Ristea 6, O. Ristea 9, D. Röhrich 8, B. H. Samset 11, D. Sandberg 6, S. J. Sanders 10, R.A.Sheetz 1, P. Staszel 3, T.S. Tveter 11, F.Videbæk 1, R. Wada 7, H. Yang 6, Z. Yin 8, and I. S. Zgura 9 1 Brookhaven National Laboratory, USA, 2 IReS and Université Louis Pasteur, Strasbourg, France 3 Jagiellonian University, Cracow, Poland, 4 Johns Hopkins University, Baltimore, USA, 5 New York University, USA 6 Niels Bohr Institute, University of Copenhagen, Denmark 7 Texas A&M University, College Station. USA, 8 University of Bergen, Norway 9 University of Bucharest, Romania, 10 University of Kansas, Lawrence,USA 11 University of Oslo Norway The BRAHMS Collaboration