Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.

Slides:



Advertisements
Similar presentations
The Physics of Supernovae
Advertisements

Neutron Stars: Insights into their Formation, Evolution & Structure from their Masses and Radii Feryal Ozel University of Arizona In collaboration with.
MINOS+ Starts April 2013 for three years April
Ch.C. Moustakidis Department of Theoretical Physics Aristotle University of Thessaloniki Greece Equation of state for dense supernova matter 28o International.
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Supernova Relic Neutrinos at Super-Kamiokande Kirk Bays University of California, Irvine 1TAUP 2011.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Neutrinos from Stellar Collapse Chris Fryer (LANL/UNM) “Normal” Core Collapse: Collapse and Bounce, Fallback and Cooling More massive Stars Low Mass Stars.
Presupernovae as powerful neutrino sources detectable by next neutrino experiments M. Kutschera, A. Odrzywołek, M. Misiaszek Ustroń 2009.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Günter Sigl, Astroparticules et Cosmologie, ParisILIAS/N5-N6 meeting, Paris, January 23-24, 2006  Supernovae as neutrino and gravitational wave sources.
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
Neutrino Reactions on the Deuteron in Core-Collapse Supernovae Satoshi Nakamura Osaka University Collaborators: S. Nasu, T. Sato (Osaka U.), K. Sumiyoshi.
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
Neutrino reactions on two-nucleon system and core-collapse supernova
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Neutrino-nucleus interaction and its role in supernova dynamics and nucleosynthesis Karlheinz Langanke GSI Helmholtzzentrum Darmstadt Technische Universität.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
TAUP Searches for nucleon decay and n-n oscillation in Super-Kamiokande Jun Kameda (ICRR, Univ. of Tokyo) for Super-Kamiokande collaboration Sep.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
Application of neutrino spectrometry
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
Tests of non-standard neutrino interactions (NSI) Cecilia Lunardini Institute for Nuclear Theory University of Washington, Seattle.
Abel, Bryan, and Norman, (2002), Science, 295, 5552 density molecular cloud analog (200 K) shock 600 pc.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Lecture 6 p+p, Helium Burning and Energy Generation.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
RESCEU Symposium, University of Tokyo, November 2008John Beacom, The Ohio State University The Diffuse Supernova Neutrino Background John Beacom The Ohio.
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Neutrino Studies at the Spallation Neutron Source, ORNL, 8/29/03W.R. Hix (UTenn./ORNL) Neutrino-Nucleus Interactions and the Core Collapse Supernova Mechanism.
Diffuse SN Neutrino Background (DSNB) in liquid Argon Cecilia Lunardini Arizona State University.
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
Waseda univ. Yamada lab. D1 Chinami Kato
Core-Collapse Supernovae and Supernova Relic Neutrinos
Astrophysical Constraints on Secret Neutrino Interactions
Jonathan Davis King’s College London
The Diffuse Flux of Supernova Neutrinos
MEMPHYS non-oscillation physics
Gamma Ray Constraints on New Physics Interpretations of IceCube Data
Neutrino astronomy Measuring the Sun’s Core
Solar & Supernova Neutrinos Detection Methods and Prospects
Stellar core collapse with QCD phase transition
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
Big World of Small Neutrinos
The neutrino mass hierarchy and supernova n
Davide Franco for the Borexino Collaboration Milano University & INFN
Feasibility of geochemical galactic neutrino flux measurement
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Presentation transcript:

Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009

Diffuse neutrinos from all SNe Sum over the whole universe: Supernovae S. Ando and K. Sato, New J.Phys.6:170,2004.

Alternative to a galactic supernova! –Lower statistics –Continuous flux, no waiting time –might be standard physics in future! ~20 events/year at Mt water Cherenkov A galactic supernova will always be once in a lifetime, the DF will be everyday stuff

Probes deep in star’s interior… physics near SN core –Energetics of collapse (mass of core, eq. of state) spectra formation oscillations at extreme density – - refraction effects, mass spectrum,  13 new physics: –axions, majorons, sterile, – decay, …

…and deep in space (and time!) ~40 % of ’s above 19.3 MeV are from z>0.5! S. Ando and K. Sato, New J.Phys.6:170,2004

Test cosmological rate of SNe Probe history of star formation –Short lived stars  SN rate traces star formation rate: R SF / R SN ~ const

Best bound: anti- e SuperKamiokande, E>19.3 MeV: 1.4 – 2.0 cm -2 s -1 (90% C.L.) SuperK coll., Malek et al., PRL 90, 2003 C. L. and O.L.G. Peres, JCAP08(2008)033 Max SN flux allowed

Theory in 2008: anti- e flux Single population: neutron star-forming collapses only! –Differences due to different inputs/methods C.L., Astropart.Phys.26: ,2006

Neutrinos from failed supernovae A new contribution to the diffuse flux C.L., arXiv: , to appear in PRL

The idea: collapse outcomes OutcomeMass range (solar mass) % of total Explosion, neutron star (NS) % Weak explosion, black hole by fallback % no explosion, direct black hole (DBH) > 409% Failed supernova: only neutrinos emitted!! Woosley, Heger, Weaver, Rev. Mod. Phys. 74, 1015 (2002)

Neutrinos as probes Neutrinos: a unique way to reveal and count failed supernovae?

Successful vs failed SNe NS-forming collapse – energetics: –anti- e survival probability: Keil, Raffelt, Janka, Astrophys. J. 590, 971 (2003) S. Chakraborty, et al., JCAP 0809, 013 (2008)

Direct BH-forming collapse: –Higher energies: For all flavors Due to rapid contraction of protoneutron star before BH formation –Electron flavors especially luminous (electron and positron captures) –Same interval of Liebendörfer et al., ApJS, 150, 263, K. Sumiyoshi et al., PRL97, (2006), T. Fischer et al., (2008), , K. Nakazato et al., PRD78, (2008)

–Progenitor: M=40 M sun, from Woosley & Weaver, 1995 –“stiffer” eq. of state (EoS)  more energetic neutrinos Shen et al. (S) EoS BH NS K. Nakazato et al., PRD78, (2008)

Lattimer-Swesty. (LS) EoS

anti- e survival probability (time averaged, constant in energy) A two population model: diffuse flux C.L., arXiv: , to appear in PRL

f NS =0.78 f NS =0.91 NS BH atmospheric Results Best case: S EOS, maximum

Pure water: Water + Gd: (better bkg.reduction) Beacom & Vagins, PRL 93, 2004 f NS =0.78 f NS =0.91 NS BH atmospheric Close to SK limit!

Number of events in water Total NS BH

Significance above background? Typical case: 100% excess due to BH in MeV bin –Water: buried by invisible muon bkg. not statistically significant in single bin Spectral fit might work –Water+Gd: invisible muons rejected 12 Mt yr exposure needed for 3 sigma significance in single bin G. L. Fogli et al., JCAP 0504, 002 (2005)

Summary: the diffuse flux from failed supernovae.. Unique way to count failed supernovae Might be substantial –total flux approaches SuperK limit For typical parameters: –Exceeds the NS contribution above 35 MeV –visible at Mt detector with water+Gd

backup

Experimental status (new!) Species (experiment) Previous best (cm -2 s -1 ) 90%CL (direct limits only) New from SK (cm -2 s -1 ) 90% CL Anti- e (SK coll.) 1.2 (E/MeV>19.3) (E/MeV>19.3) e (SNO) 70, (22.9<E/MeV<36.9) 42-54, (22.9<E/MeV<36.9)  +   (LSD) (E/MeV>20) ( ) 10 3 (E/MeV>19.3) Anti-  + anti-  (LSD) (E/MeV>20) ( ) 10 3 (E/MeV>19.3) C. L. and O.L.G. Peres, JCAP08(2008)033

New SuperK limit (preliminary) T. Iida, Neutrino 2008 conference

S EOS LS EOS e x “Luminosities afterward are dominated by the contributions from the accreted matter, which is heated up by the shock wave and further by compression onto the proto-neutron star surface. Since the accreted matter contains a lot of electrons and positrons, they annihilate with each other to create pairs of neutrino and anti-neutrino of all species. They are also captured by nucleons to produce electron-type neutrinos and antineutrinos. This latter processes are responsible for the dominance of nu-e and anti-nue as well as their similarity in the luminosity.” K. Sumiyoshi et al., PRL97, (2006) e x

Work in progress More on numbers of events – significance over background Neutrino channel –fluxes, –number of events in Liquid Argon More detailed treatment of flavor conversion