Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute.

Slides:



Advertisements
Similar presentations
Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development.
Advertisements

 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
METO621 Lesson 18. Thermal Emission in the Atmosphere – Treatment of clouds Scattering by cloud particles is usually ignored in the longwave spectrum.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
Channel Selection for CO 2 Retrieval Using Near Infrared Measurements EGU 2009 Le Kuai 1, Vijay Natraj 1, Run-Lie Shia 1, Susan Kulawik 2, Kevin Bowman.
The Orbiting Carbon Observatory Mission: Effects of Polarization on Retrievals Vijay Natraj Advisor: Yuk Yung Collaborators: Robert Spurr (RT Solutions,
ABSORPTION BANDS The many absorption bands at 2.3  m ( cm -1 ) and the one band near 1.6  m (6000 cm -1 ) will be considered (Figure 1). Other.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Page 1 1 of 16, NATO ASI, Kyiv, 9/15/2010 Vijay Natraj (Jet Propulsion Laboratory) Collaborators Hartmut Bösch (Univ Leicester) Rob Spurr (RT Solutions)
The Averaging Kernel of CO2 Column Measurements by the Orbiting Carbon Observatory (OCO), Its Use in Inverse Modeling, and Comparisons to AIRS, SCIAMACHY,
Retrieval of CO 2 Column Abundances from Near-Infrared Spectroscopic Measurements Vijay Natraj.
Page 1 1 of 19, OCO STM 2006 OCO Science Team Meeting March 22, 2006 Vijay Natraj (Caltech), Hartmut Bösch (JPL), Yuk Yung (Caltech) A Two Orders of Scattering.
A Channel Selection Method for CO 2 Retrieval Using Information Content Analysis Le Kuai 1, Vijay Natraj 1, Run-Lie Shia 1, Charles Miller 2, Yuk Yung.
Page 1 1 of 100, L2 Peer Review, 3/24/2006 Level 2 Algorithm Peer Review Polarization Vijay Natraj.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Retrieval of Oxygen A-band Spectra Using Airborne Measurements Vijay Natraj et al.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
AGU Fall MeetingDecember 4, 2005 Vijay Natraj (California Institute of Technology) Hartmut Bösch (Jet Propulsion Laboratory) Yuk Yung (California Institute.
Retrieval Theory Mar 23, 2008 Vijay Natraj. The Inverse Modeling Problem Optimize values of an ensemble of variables (state vector x ) using observations:
Page 1 1 of 20, EGU General Assembly, Apr 21, 2009 Vijay Natraj (Caltech), Hartmut Bösch (University of Leicester), Rob Spurr (RT Solutions), Yuk Yung.
REMOTE SENSING & THE INVERSE PROBLEM “Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the analysis.
Empirical Orthogonal Function (EOF) Analysis on the O 2 A-band Vijay Natraj, Run-Lie Shia, Xun Jiang and Yuk Yung.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
 Assuming only absorbing trace gas abundance and AOD are retrieved, using CO 2 absorption band alone provides a DOF ~ 1.1, which is not enough to determine.
Satellite-derived Sea Surface Temperatures Corey Farley Remote Sensing May 8, 2002.
CrIS Use or disclosure of data contained on this sheet is subject to NPOESS Program restrictions. ITT INDUSTRIES AER BOMEM BALL DRS EDR Algorithms for.
1 Atmospheric Radiation – Lecture 9 PHY Lecture 10 Infrared radiation in a cloudy atmosphere: approximations.
Dr. North Larsen, Lockheed Martin IS&S Dr. Knut Stamnes, Stevens Institute Technology Use of Shadows to Retrieve Water Vapor in Hazy Atmospheres Dr. North.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Hyperspectral Infrared Alone Cloudy Sounding Algorithm Development Objective and Summary To prepare for the synergistic use of data from the high-temporal.
Line-by-Line Radiative Transfer Model (LBLRTM) Calculations for Gas Corrections for MODIS Falguni Patadia, Rob Levy November 8, 2012 Aerosol Retreat.
Water Vapour & Cloud from Satellite and the Earth's Radiation Balance
Testing LW fingerprinting with simulated spectra using MERRA Seiji Kato 1, Fred G. Rose 2, Xu Liu 1, Martin Mlynczak 1, and Bruce A. Wielicki 1 1 NASA.
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Using CALIPSO to Explore the Sensitivity to Cirrus Height in the Infrared.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
Limb Retrieval at IFE/IUP in Bremen Working team: A. Rozanov, K.-U. Eichmann, C. v. Savigny, J. Kaiser Tests based on level 0 data Normalisation by –Solar.
Radiative transfer in the thermal infrared and the surface source term
AGU Highlights Vijay Natraj. CO 2 Retrieval Simulation from GOSAT Thermal IR Spectra 15 um CO 2 band; 0.2 cm -1 res, ~ 300 S/N 110 layers for forward.
The Orbiting Carbon Observatory (OCO) Mission: Retrieval Characterisation and Error Analysis H. Bösch 1, B. Connor 2, B. Sen 1, G. C. Toon 1 1 Jet Propulsion.
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
1 Information Content Tristan L’Ecuyer. 2 Degrees of Freedom Using the expression for the state vector that minimizes the cost function it is relatively.
Retrieval of cloud parameters from the new sensor generation satellite multispectral measurement F. ROMANO and V. CUOMO ITSC-XII Lorne, Victoria, Australia.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: Initial trade-off: Height-resolved.
An Optimal Estimation Spectral Retrieval Approach for Exoplanet Atmospheres M.R. Line 1, X. Zhang 1, V. Natraj 2, G. Vasisht 2, P. Chen 2, Y.L. Yung 1.
The Orbiting Carbon Observatory Mission: Fast Polarization Calculations Using the R-2OS Radiative Transfer Model Vijay Natraj 1, Hartmut Bösch 2, Robert.
Global Characterization of X CO2 as Observed by the OCO (Orbiting Carbon Observatory) Instrument H. Boesch 1, B. Connor 2, B. Sen 1,3, G. C. Toon 1, C.
Polarization Effects on Column CO 2 Retrievals from GOSAT Measurements Vijay Natraj 1, Hartmut Bösch 2, Robert J.D. Spurr 3, Yuk L. Yung 4 1 Jet Propulsion.
AGU 2008 Highlight Le Kuai Lunch seminar 12/30/2008.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Aerosol retrieval from spectral measurements in twilight conditions: ground-based and satellite-based cases Nina Mateshvili (1), Didier Fussen (1), Giuli.
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Johan de Haan Pepijn Veefkind
Polarization Effects on Column CO2 Retrievals from Non-Nadir Satellite Measurements in the Short-Wave Infrared Vijay Natraj1, Hartmut Bösch2, Robert J.D.
Computing cloudy radiances
An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME
Computing cloudy radiances
Polarization Effects on Column CO2 Retrievals from Non-Nadir Satellite Measurements in the Short-Wave Infrared Vijay Natraj1, Hartmut Bösch2, Robert J.D.
Presentation transcript:

Extracting Atmospheric and Surface Information from AVIRIS Spectra Vijay Natraj, Daniel Feldman, Xun Jiang, Jack Margolis and Yuk Yung California Institute of Technology May 24, 2005

Objectives  Calculate information content of trace gas concentration  Investigate effect of signal-to-noise ratio (SNR) on retrieval precision  Compare clear and aerosol-laden scenes  Assess impact of varying surface types  Analyze benefits of physics-based retrieval

Retrieval Technique  Forward Model Description of radiative transfer in the atmosphere Simulation of instrument response  Inverse Method Iteration to best match the observed spectrum Optimal Estimation Theory (Rodgers, 2000)

Physics of Radiative Transfer  Fundamental equation of radiative transfer  Multiple scattering algorithm: Isaacs 2-stream, DISORT 16- stream  Radiative transport algorithm: standard band model with Curtis-Godson path averaging  Band model resolution: 5 cm -1 ; 33 absorption coefficients per spectral bin

Optimal Estimation  Measurement Description  Minimization of Cost Function

Need for a priori Information  Ill-posed, nonlinear inversion problem  A priori make problem well-posed  Based on what we already know about the atmospheric or surface state  Obtained from climatological data, radiosonde measurements, or ad hoc descriptions  Care needed in selecting a priori

Weighting Functions: CO 2 Pressure (mbar) Weighting Function (  W/m 2 /sr/nm/ppmv)

Weighting Functions: H 2 O Weighting Function (  W/m 2 /sr/nm/ppmv) Pressure (mbar)

Weighting Functions: CH 4 Weighting Function (  W/m 2 /sr/nm/ppmv) Pressure (mbar)

Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Column Weighting Function: CO 2

Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Column Weighting Function: H 2 O

Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Column Weighting Function: CH 4

Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm) Weighting Function: Surface Pressure

Weighting Function: Surface Type I Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm)

Weighting Function: Surface Type II Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm)

Weighting Function: Surface Type III Wavelength (nm) Δ Radiance (  W/m 2 /sr/nm)

Retrieval Parameters  CO 2 column scaling factor  CH 4 column scaling factor  H 2 O column scaling factor  Surface pressure  Fractions of three surface types (1: conifer, 2: cropland, 3: desert)

Model Parameters  11-layer atmosphere (5 in stratosphere)  Solar Zenith Angle = 50 degrees  Nadir Viewing  Aerosol "Rural" (bottom 2 layers), "Tropospheric" (next 4), "Background Stratospheric" (rest) Visibility = 2 km, 20 km, 200 km (clear sky)

SNR Retrieval Precision: H 2 O Column H 2 O column scaling factor-1 Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

SNR Retrieval Precision: CO 2 Column CO 2 column scaling factor-1 Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

SNR Retrieval Precision: CH 4 Column CH 4 column scaling factor-1 Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

SNR Retrieval Precision: Surface Pressure Surface Pressure Uncertainty (mbar) Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

SNR Retrieval Precision: Surface Type I Uncertainty in Fraction of Surface Type I Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

SNR Retrieval Precision: Surface Type II Uncertainty in Fraction of Surface Type II Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

SNR Retrieval Precision: Surface Type III Uncertainty in Fraction of Surface Type III Black: a priori uncertainty Green: clear sky Red: aerosol (20 km visibility) Blue: aerosol (2 km visibility)

Full Retrieval (SNR = 2000) Wavelength (nm) Radiance (  W/m 2 /sr/nm) Black: true Red: retrieved Blue: a priori Red: retrieved - true Blue: a priori - true Residual (  W/m 2 /sr/nm)

Retrieval of Surface Types Only (SNR = 2000) Wavelength (nm) Radiance (  W/m 2 /sr/nm) Residual (  W/m 2 /sr/nm) Black: true Red: retrieved Blue: a priori Red: retrieved - true Blue: a priori - true

Surface Retrieval Precision FractionFull Retrieval (%)Only Surface Retrieval (%) Surface Type Surface Type Surface Type

Computer Specifications  Dual Processor Intel Xeon CPU  Clock speed: 2.2 GHz  RAM: 2 GB  8-9 minutes per retrieval

Conclusions  Different AVIRIS channels have different sensitivity to atmospheric/surface parameters  Retrieval precisions improve with increasing SNR  Even cloudy scenes can be retrieved  Error in atmospheric correction can lead to significant error in surface retrieval