HBr / DBr Tunneling vs lifetime calculations & Excitations according to Castlemann ( ) agust,www, June11/PPT ak.ppt agust,heima,.....June11/XLS ak.xls agust,heima,....June11/PXP ak.pxp
HBr: E V v´=3 v´=2 v´=1 v´=0 DBr: E V v´=3 v´=2 v´=1 v´= cm-1(Castleman) / (ours,´98) cm =>U0= =>U0= =>U0= (ours,´98) 6310 (ours,´98) =a =a =a (ours,´98) 1976 (ours,´98) =a =a =a 0
HBr:Castlemann: Ours(´98): vE/eVE/cm-1 U0=E(v=3)-E(v)ao/A from a0(A) used tocastelman´sNB!: DBrderive same lifet.paper:Calc. vas in paperLifetimes(ps)E(v)/eVE(v)/cm-1U0=E(HBr,v=3)-E(v)/cm-1a0/nma0/mU0/kJ mol-1U0/Ja (m/(Js))lifet(s)lifet (ps)U0/a0 (J/m)U0/a0(cm-1/nm) E E E E E E E E E E E E E E E E E E E E E E E-20 : is constantca. constant HBr, v= average:1.1177E agust,heima,.....June11/XLS ak.xls
HBr: E V v´=3 v´=2 v´=1 v´= cm-1(Castleman) / (ours,´98) (ours,´98) 6310 (ours,´98) 4082 (ours,´98) 1976 (ours,´98) =a =a =a 0 Try for U 0 = E(v=n)-E(v) for n = 1-2, v = 0,1 i.e cm-1 <U0< 4334 cm-1 for v´=0 0<U0< 2106 cm-1 for v´=0 U0=E(v=1)-E(v)U0=E(v=2)-E(v)v
Ebarrier Uo(v´=0)/cm-1Uo(v´=1)/cm-1Uo(v´=0)/JU0(v´=1)/Jao(v=0)/mao(v=0)/AUo(v´=0)/ao(v=0)(J/m)ao(v=1)/mao(v=1)/At(v=1)/s t(v=1)/ps E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-01 HBr: For lifetime of v´=0 for E state = 10 ps (according to Castleman ): agust,heima,.....June11/XLS ak.xls NB! According to Long ( states summary jl.ppt ) states summary jl.ppt Lifetime for E(v´=0) ps Lifetime for E(v´=1) to ps Lets try calculations for lifetime E(v´=0 )= 6.5 ps
HBr: For lifetime of v´=0 for E state = 6.5 ps (according to Long): agust,heima,.....June11/XLS ak.xls Ebarrier Uo(v´=0)/cm-1Uo(v´=1)/cm-1Uo(v´=0)/JU0(v´=1)/Jao(v=0)/mao(v=0)/AUo(v´=0)/ao(v=0)(J/m)ao(v=1)/mao(v=1)/At(v=1)/s t(v=1)/ps E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-01
Our paper, ´98 ( ): E/cm -1 v´+1 HBr: Coefficient values ± one standard deviation a= ± 14.9 = we hallat.:b= ± 5.44 _ -2*wexe => wexe= cm -1 D81Br: m(reduced mass) g mol-1 ((1)/(2)) ** we(E, D81Br) cm-1 wexe(E,D81Br) cm-1 agust,heima,.....June11/XLS ak.xls agust,heima,....June11/PXP ak.pxp; Gr0, Lay0
excitations according to Castlemann a : l / nmE(exc.)2*E(exc.)l lowl highE highE lowE high-E lowEt highEt low 256.1nm nm nm agust,heima,.....June11/XLS ak.xls a:
nm nm Ours Castlemann´s H 81 Br E-state D 81 Br E-state Excitations According to Castlemann To= agust,heima,....June11/PXP ak.pxp; Gr1, Lay1 v´=0 v´=1 v´=2 v´=3 v´=0 v´=1 v´=2 v´=3 Error limits for laser excitations
Comments: excitations for H 81 Br are clearly to v´= 0 Excitations to D 81 Br are also primarely to v´= 0 but because of linewidth of laser beam there is an increasing contribution of excitations to v´= 1 (only) as = > > nm but no significant excitation is to v´= 2 ! The difference in evaluations of energy levels for v´(E) for DBr for me and Castlemann´s is: - Castlemann relies on the e = 1365 cm -1 (?) value according to NIST a - I evaluate e and e x e for DBr from the corresponding values for H 81 Br by the relationship e (2) = e (1)* and e x e (2) = e x e (1)* **2 where and use To evaluated from the HBr parameters (see: agust,heima,.....June11/XLS ak.xls ) This strongly suggest s that the barrier is lower than v´= 3 for HBr (which is what Castlemann suggests ( )) a:
nm nm Ours Castlemann´s H 81 Br E-state D 81 Br E-state Excitations According to Castlemann To= agust,heima,....June11/PXP ak.pxp; Gr1, Lay1 v´=0 v´=1 v´=2 v´=3 v´=0 v´=1 v´=2 v´=3 483 cm -1 ! 825 cm / 1155 cm -1