Chapter 2 Application Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 7.

Slides:



Advertisements
Similar presentations
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r Sockets are explicitly created, used, released by applications.
Advertisements

Network Programming and Java Sockets
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Application Layer – Lecture.
2: Application Layer 1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
9/23/2003-9/25/2003 Sockets & DNS September 23-25, 2003.
1 Creating a network app Write programs that  run on different end systems and  communicate over a network.  e.g., Web: Web server software communicates.
2: Application Layer1 Data Communication and Networks Lecture 4  Application Protocols (P2P, DNS)  Java Sockets September 30, 2004.
2: Application Layer P2P applications and Sockets.
2: Application Layer1 Data Communication and Networks Lecture 12 Java Sockets November 30, 2006.
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
1 Overview r Socket programming with TCP r Socket programming with UDP r Building a Web server.
1 Review of Previous Lecture r Electronic Mail r DNS r P2P file sharing.
Internet and Intranet Protocols and Applications Lecture 4: Application Layer 3: Socket Programming February 8, 2005 Arthur Goldberg Computer Science Department.
2: Application Layer1 Chapter 2 (continued) Application Layer – part 2 Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim.
Socket programming with UDP and TCP. Socket Programming with TCP Connection oriented – Handshaking procedure Reliable byte-stream.
2: Application Layer1 Socket Programming. 2: Application Layer2 Socket-programming using TCP Socket: a door between application process and end- end-transport.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
1 Network Layers Application Transport Network Data-Link Physical bits.
Protocols Rules for communicating between two entities (e.g., a client and a server) “A protocol definition specifies how distributed system elements interact.
2: Application Layer 1 Socket Programming Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
2: Application Layer 1 Socket Programming TCP and UDP.
JAVA Socket Programming Source: by Joonbok Lee, KAIST, 2003.
1 1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm.
CS 3830 Day 11 Introduction : Application Layer 2 Server-client vs. P2P: example Client upload rate = u, F/u = 1 hour, u s = 10u, d min ≥ u s.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP.
Chapter 2: Application layer
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Prof. Younghee Lee 1 1 Computer Networks u Lecture 4: DNS, P2P, Socket Programming Prof. Younghee Lee * Some part of this teaching materials are prepared.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
Winter 2002Suprakash Datta1 Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
-1- Georgia State UniversitySensorweb Research Laboratory CSC4220/6220 Computer Networks Dr. WenZhan Song Associate Professor, Computer Science.
Socket Programming Lee, Sooyong
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Network Programming and Sockets CPSC 363 Computer Networks Ellen Walker Hiram College (Includes figures from Computer Networking by Kurose & Ross, © Addison.
Socket Programming Tutorial. Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications  app architectures  app requirements r 2.2 Web and HTTP r.
Java Socket programming. Socket programming with TCP.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Socket programming Socket API Explicitly created, used, released by apps Client/server paradigm Two types of transport service via.
1 CSCD 330 Network Programming Spring 2014 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 7 Application.
Chapter 2 Application Layer Application 2-1. Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic.
1 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of.
1 COMP 431 Internet Services & Protocols Client/Server Computing & Socket Programming Jasleen Kaur February 2, 2016.
1 CSCD 330 Network Programming Fall 2013 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 8a Application.
Socket programming in C. Socket programming Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 11 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 All rights reserved to Chun-Chuan Yang Upon completion you will be able to: The OSI Model and the TCP/IP Protocol Suite Understand the architecture of.
2: Application Layer1 Network applications: some jargon Process: program running within a host. r within same host, two processes communicate using interprocess.
05 - P2P applications and Sockets
Socket Programming Socket Programming Overview
DNS: Domain Name System
Socket programming with TCP
Chapter 2: outline 2.1 principles of network applications
Socket programming - Java
Socket Programming Socket Programming Overview
Socket Programming.
Socket Programming 2: Application Layer.
DNS: Domain Name System
CPSC 441 UDP Socket Programming
Chapter 2: Application layer
DNS: Domain Name System
DNS: Domain Name System
Presentation transcript:

Chapter 2 Application Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 7

2: Application Layer 2 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP, POP3, IMAP r 2.5 DNS r 2.6 P2P applications r 2.7 Socket programming with TCP r 2.8 Socket programming with UDP

2: Application Layer 3 DNS: Domain Name System People: many identifiers:  SSN, name, passport # Internet hosts, routers:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., ww.yahoo.com - used by humans Domain Name System: r distributed database implemented in hierarchy of many name servers r application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)  note: core Internet function, implemented as application- layer protocol  complexity at network’s “edge”

2: Application Layer 4 TLD and Authoritative Servers r Top-level domain (TLD) servers:  responsible for com, org, net, edu, etc, and all top- level country domains uk, fr, ca, jp.  Network Solutions maintains servers for com TLD  Educause for edu TLD r Authoritative DNS servers:  organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail).  can be maintained by organization or service provider

2: Application Layer 5 Local Name servers: r does not strictly belong to hierarchy r each ISP (residential ISP, company, university) has one.  also called “default name server” r when host makes DNS query, query is sent to its local DNS server  acts as proxy, forwards query into hierarchy Root name servers: r contacted by local name server that can not resolve name r root name server:  contacts authoritative name server if name mapping not known  gets mapping  returns mapping to local name server

2: Application Layer 6 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server DNS name resolution example r Host at cis.poly.edu wants IP address for gaia.cs.umass.edu iterated query: r contacted server replies with name of server to contact r “I don’t know this name, but ask this server”

2: Application Layer 7 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server 3 recursive query: r puts burden of name resolution on contacted name server r heavy load? DNS name resolution example

2: Application Layer 8 DNS records DNS: distributed db storing resource records (RR) RR format: (name, value, type, ttl) r Type=A  name is hostname  value is IP address r Type=CNAME  name is alias name for some “canonical” (the real) name is really servereast.backup2.ibm.com  value is canonical name r Type=MX  value is name of mailserver associated with name r Type=NS  name is domain (e.g. foo.com)  value is hostname of authoritative name server for this domain

2: Application Layer 9 DNS protocol, messages DNS protocol : query and reply messages, both with same message format Name, type fields for a query RRs in response to query records for authoritative servers additional “helpful” info that may be used

2: Application Layer 10 Pure P2P architecture r no always-on server r arbitrary end systems directly communicate r peers are intermittently connected and change IP addresses r Three topics:  File distribution  Searching for information  Case Study: Skype peer-peer

2: Application Layer 11 File Distribution: Server-Client vs P2P Question : How much time to distribute file from one server to N peers? usus u2u2 d1d1 d2d2 u1u1 uNuN dNdN Server Network (with abundant bandwidth) File, size F u s : server upload bandwidth u i : peer i upload bandwidth d i : peer i download bandwidth

2: Application Layer 12 Server-client vs. P2P: example Client upload rate = u, F/u = 1 hour, u s = 10u, d min ≥ u s

2: Application Layer 13 File distribution: BitTorrent tracker: tracks peers participating in torrent torrent: group of peers exchanging chunks of a file obtain list of peers trading chunks peer r P2P file distribution

2: Application Layer 14 BitTorrent r file divided into 256KB chunks. r peer joining torrent:  has no chunks, but will accumulate them over time  registers with tracker to get list of peers, connects to subset of peers (“neighbors”) r while downloading, peer uploads chunks to other peers. r peers may come and go r once peer has entire file, it may (selfishly) leave or (altruistically) remain Pulling Chunks r at any given time, peers have different subsets of file chunks r periodically, a peer (Alice) asks each neighbor for list of chunks that they have. r Alice sends requests for her missing chunks  rarest first

Alice sends chunks to four neighbors currently sending her chunks at the highest rate re-evaluate top 4 every 10 secs every 30 secs: randomly select another peer, starts sending chunks newly chosen peer may join top 4 “optimistically unchoke” 2: Application Layer 15 BitTorrent: Tit-for-tat (1) Alice “optimistically unchokes” Bob (2) Alice becomes one of Bob’s top-four providers; Bob reciprocates (3) Bob becomes one of Alice’s top-four providers

2: Application Layer 16 P2P: searching for information Index in P2P system: maps information to peer location (location = IP address & port number) File sharing (eg e-mule) Index dynamically tracks the locations of files that peers share. Peers need to tell index what they have. Peers search index to determine where files can be found Instant messaging Index maps user names to locations. When user starts IM application, it needs to inform index of its location Peers search index to determine IP address of user.

2: Application Layer 17 P2P: centralized index original “Napster” design 1) when peer connects, it informs central server:  IP address  content 2) Alice queries for “Hey Jude” 3) Alice requests file from Bob centralized directory server peers Alice Bob r single point of failure r performance bottleneck r copyright infringement: “target” of lawsuit is obvious

2: Application Layer 18 Query flooding Query QueryHit Query QueryHit Query QueryHit File transfer: HTTP r fully distributed no central server r used by Gnutella r Query message sent over existing TCP connections r peers forward Query message r QueryHit sent over reverse path Scalability: limited scope flooding

2: Application Layer 19 Hierarchical Overlay r between centralized index, query flooding approaches r each peer is either a super node or assigned to a super node  TCP connection between peer and its super node.  TCP connections between some pairs of super nodes. r Super node tracks content in its children

2: Application Layer 20 P2P Case study: Skype r inherently P2P: pairs of users communicate. r proprietary application- layer protocol (inferred via reverse engineering) r hierarchical overlay with SNs r Index maps usernames to IP addresses; distributed over SNs r Relay nodes are used to help nodes behind NATs Skype clients (SC) Supernode (SN) Skype login server

2: Application Layer 21 Lecture 7: Outline r 2.5 Domain Name System  Hierarchy  DNS protocol r 2.6 Peer to Peer  File distribution  Information search  Skype r 2.7 Socket Programming with TCP r 2.8 Socket Programming with UDP

2: Application Layer 22 Socket programming Socket API r introduced in BSD4.1 UNIX, 1981 r explicitly created, used, released by apps r client/server paradigm r two types of transport service via socket API:  unreliable datagram  reliable, byte stream-oriented a host-local, application- created, OS-controlled interface (a “door”) into which application process can both send and receive messages to/from another application process socket Goal: learn how to build client/server application that communicate using sockets

2: Application Layer 23 Socket-programming using TCP Socket: a door between application process and end-end- transport protocol (UCP or TCP) TCP service: reliable transfer of bytes from one process to another process TCP with buffers, variables socket controlled by application developer controlled by operating system host or server process TCP with buffers, variables socket controlled by application developer controlled by operating system host or server internet

2: Application Layer 24 Socket programming with TCP Client must contact server r server process must first be running r server must have created socket (door) that welcomes client’s contact Client contacts server by: r creating client-local TCP socket r specifying IP address, port number of server process r When client creates socket: client TCP establishes connection to server TCP r When contacted by client, server TCP creates new socket for server process to communicate with client  allows server to talk with multiple clients  source port numbers used to distinguish clients TCP provides reliable, in-order transfer of bytes (“pipe”) between client and server application viewpoint

2: Application Layer 25 Client/server socket interaction: TCP wait for incoming connection request connectionSocket = welcomeSocket.accept() create socket, port= x, for incoming request: welcomeSocket = ServerSocket() create socket, connect to hostid, port= x clientSocket = Socket() close connectionSocket read reply from clientSocket close clientSocket Server (running on hostid ) Client send request using clientSocket read request from connectionSocket write reply to connectionSocket TCP connection setup

2: Application Layer 26 Client process client TCP socket Stream jargon r A stream is a sequence of characters that flow into or out of a process. r An input stream is attached to some input source for the process, e.g., keyboard or socket. r An output stream is attached to an output source, e.g., monitor or socket.

2: Application Layer 27 Socket programming with TCP Example client-server app: 1) client reads line from standard input ( inFromUser stream) sends to server via socket ( outToServer stream) 2) server reads line from socket 3) server converts line to uppercase, sends back to client 4) client reads, prints modified line from socket ( inFromServer stream)

2: Application Layer 28 Example: Java client (TCP) import java.io.*; import java.net.*; class TCPClient { public static void main(String argv[]) throws Exception { String sentence; String modifiedSentence; BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); Socket clientSocket = new Socket("hostname", 6789); DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream()); Create input stream Create client socket, connect to server Create output stream attached to socket

2: Application Layer 29 Example: Java client (TCP), cont. BufferedReader inFromServer = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); sentence = inFromUser.readLine(); outToServer.writeBytes(sentence + '\n'); modifiedSentence = inFromServer.readLine(); System.out.println ("FROM SERVER: " + modifiedSentence ); clientSocket.close(); } Create input stream attached to socket Send line to server Read line from server

2: Application Layer 30 Example: Java server (TCP) import java.io.*; import java.net.*; class TCPServer { public static void main(String argv[]) throws Exception { String clientSentence; String capitalizedSentence; ServerSocket welcomeSocket = new ServerSocket(6789); while(true) { Socket connectionSocket = welcomeSocket.accept(); BufferedReader inFromClient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream())); Create welcoming socket at port 6789 Wait, on welcoming socket for contact by client Create input stream, attached to socket

2: Application Layer 31 Example: Java server (TCP), cont DataOutputStream outToClient = new DataOutputStream (connectionSocket.getOutputStream()); clientSentence = inFromClient.readLine(); capitalizedSentence = clientSentence.toUpperCase() + '\n'; outToClient.writeBytes(capitalizedSentence); } Read in line from socket Create output stream, attached to socket Write out line to socket End of while loop, loop back and wait for another client connection

2: Application Layer 32 Lecture 7: Outline r 2.5 Domain Name System  Hierarchy  DNS protocol r 2.6 Peer to Peer  File distribution  Information search  Skype r 2.7 Socket Programming with TCP r 2.8 Socket Programming with UDP

2: Application Layer 33 Socket programming with UDP UDP: no “connection” between client and server r no handshaking r sender explicitly attaches IP address and port of destination to each packet r server must extract IP address, port of sender from received packet UDP: transmitted data may be received out of order, or lost application viewpoint UDP provides unreliable transfer of groups of bytes (“datagrams”) between client and server

2: Application Layer 34 Client/server socket interaction: UDP Server (running on hostid ) close clientSocket read datagram from clientSocket create socket, clientSocket = DatagramSocket() Client Create datagram with server IP and port=x; send datagram via clientSocket create socket, port= x. serverSocket = DatagramSocket() read datagram from serverSocket write reply to serverSocket specifying client address, port number

2: Application Layer 35 Example: Java client (UDP) Output: sends packet (recall that TCP sent “byte stream”) Input: receives packet (recall that TCP received “byte stream”) Client process client UDP socket

2: Application Layer 36 Example: Java client (UDP) import java.io.*; import java.net.*; class UDPClient { public static void main(String args[]) throws Exception { BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in)); DatagramSocket clientSocket = new DatagramSocket(); InetAddress IPAddress = InetAddress.getByName("hostname"); byte[] sendData = new byte[1024]; byte[] receiveData = new byte[1024]; String sentence = inFromUser.readLine(); sendData = sentence.getBytes(); Create input stream Create client socket Translate hostname to IP address using DNS

2: Application Layer 37 Example: Java client (UDP), cont. DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 9876); clientSocket.send(sendPacket); DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); clientSocket.receive(receivePacket); String modifiedSentence = new String(receivePacket.getData()); System.out.println("FROM SERVER:" + modifiedSentence); clientSocket.close(); } Create datagram with data-to-send, length, IP addr, port Send datagram to server Read datagram from server

2: Application Layer 38 Example: Java server (UDP) import java.io.*; import java.net.*; class UDPServer { public static void main(String args[]) throws Exception { DatagramSocket serverSocket = new DatagramSocket(9876); byte[] receiveData = new byte[1024]; byte[] sendData = new byte[1024]; while(true) { DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); serverSocket.receive(receivePacket); Create datagram socket at port 9876 Create space for received datagram Receive datagram

2: Application Layer 39 Example: Java server (UDP), cont String sentence = new String(receivePacket.getData()); InetAddress IPAddress = receivePacket.getAddress(); int port = receivePacket.getPort(); String capitalizedSentence = sentence.toUpperCase(); sendData = capitalizedSentence.getBytes(); DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, port); serverSocket.send(sendPacket); } Get IP addr port #, of sender Write out datagram to socket End of while loop, loop back and wait for another datagram Create datagram to send to client

2: Application Layer 40 Chapter 2: Summary r application architectures  client-server, P2P, hybrid r application service requirements:  reliability, bandwidth, delay r Internet transport service model  connection-oriented, reliable: TCP  unreliable, datagrams: UDP r specific protocols:  HTTP, FTP, SMTP, POP, IMAP, DNS, P2P: BitTorrent, Skype r socket programming our study of network apps now complete!

2: Application Layer 41 Chapter 2: Summary r typical request/reply message exchange:  client requests info or service  server responds with data, status code r message formats:  headers: fields giving info about data  data: info being communicated r Important themes:  control vs. data msgs (in-band, out-of-band)  centralized vs. decentralized  stateless vs. stateful  reliable vs. unreliable msg transfer  “complexity at network edge” Most importantly: learned about protocols