A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.

Slides:



Advertisements
Similar presentations
Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Advertisements

Electric Quadrupole Transitions in the Band of Oxygen: a Case Study Iouli E. Gordon Samir Kassi Alain Campargue Geoffrey C. Toon a 1  g — X 3  g -
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Vibrational Spectroscopy I
Chemistry 6440 / 7440 Vibrational Frequency Calculations.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
9th Biennal HITRAN Conference Harvard-Smithsonian Center for Astrophysics June 26–28, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
Observations of SO 2 spectra with a quantum cascade laser spectrometer around 1090 and 1160 cm -1. Comparison with HITRAN database and updated calculations.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
Frequency Calculation. *A nonlinear molecule with n atoms has 3n — 6 normal modes: the motion of each atom can be described by 3 vectors, along the x,
Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the Band of Oxygen Iouli E. Gordon Laurence S. Rothman Samir Kassi Alain.
Lecture 3 INFRARED SPECTROMETRY
SPECTRA, an Internet Accessible Information System for Spectroscopy of Atmospheric Gases Semen MIKHAILENKO, Yurii BABIKOV, Vladimir.
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
Revisit vibrational Spectroscopy
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Spectroscopy of NCNCS at the Canadian Light Source: the far-infrared spectrum of the ν 7 region from cm -1 (and beyond…) Dennis W. Tokaryk, Stephen.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
ROTATIONAL SPECTROSCOPY
The rotational spectrum of chlorine nitrate (ClONO 2 ): 6 and the 5 / 6 9 dyad Zbigniew Kisiel, Ewa Białkowska-Jaworska Institute of Physics, Polish Academy.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
68th Ohio State University Symposium on Molecular Spectroscopy June 17–21, 2013 SF 6 THE FORBIDDEN BAND UNVEILED V. BOUDON, Laboratoire Interdisciplinaire.
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
66th OSU International symposium on molecular spectroscopy
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
The 1 and 6 bands of diiodo- methane CH 2 I 2 around 3.3  m studied by high-resolution FTS J. Orphal, N. Ibrahim Laboratoire Interuniversitaire des Systèmes.
CDSD (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications Sergei Tashkun and Valery Perevalov Laboratory.
Analysis of interactions between excited vibrational states in the FASSST rotational spectrum of S(CN) 2 Zbigniew Kisiel, Orest Dorosh Institute of Physics,
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Deuterium enriched water vapor Fourier Transform Spectroscopy: the cm -1 spectral region. (1) L. Daumont, (1) A. Jenouvrier, (2) S. Fally, (3)
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
66th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2011 HIGH RESOLUTION SPECTROSCOPY AND PRELIMINARY ANALYSIS OF C–H STRETCHING.
65th Ohio State University Symposium on Molecular Spectroscopy June 21–25, 2010 Stark spectrum simulation of X 2 Y 4 asymmetric molecules: application.
68th Ohio State University Symposium on Molecular Spectroscopy June 17–21, 2013 Frequency Analysis of the 10 μm Region of the Ethylene Spectrum using the.
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
An analytical potential for the for the a 3  + state of KLi, (derived from observations of the upper vibrational levels only) Houssam Salami, Amanda Ross,
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
D. Mondelain, A. Campargue, S. Kassi Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS The water vapor self-continuum in the 1.6 µm.
Rotational and Hyperfine Analyses of the Band of 17 O- Containing Isotopologues of Oxygen Measured by CRDS at Room and Liquid Nitrogen Temperatures Olga.
Schrödinger Equation – Model Systems: We have carefully considered the development of the Schrödinger equation for important model systems – the one, two.
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
FAST SCAN SUBMILLIMETER SPECTROSCOPIC TECHNIQUE (FASSST). IVAN R. MEDVEDEV, BRENDA P. WINNEWISSER, MANFRED WINNEWISSER, FRANK C. DE LUCIA, DOUGLAS T. PETKIE,
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
HIGH RESOLUTION SPECTROSCOPY OF THE CARBON CAGE ADAMANTANE C10H16
International Symposium on Molecular Spectroscopy
Comb-Assisted Cavity Ring Down Spectroscopy
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
Advertisement.
A. Barbe, M. R. De Backer-Barilly, Vl. G. Tyuterev, D. Romanini1, S
An accurate and complete empirical line list for water vapor
Fourier Transform Infrared Spectral
Presentation transcript:

A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS spectra. Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 6089 Université de Reims Champagne – Ardenne France 1 Laboratoire de Spectrométrie Physique, UMR CNRS 5588, Université Joseph Fourier, Saint Martin d’Hères, France

The compact fibered CW-CRDS spectrometer (Grenoble) nm ( cm -1 ) Typical sensitivity 3  cm -1 Lambdameter Photodiode Optical isolator Laser diode Coupler AO Modulator laser ON threshold =f(T,I) 6nm/diode 40 diodes

Intensity calculations

# # #   Global survey of the 6000 – 6200 cm -1 spectral range 7 different diodes : without impurities : CO 2, H 2 O, CO

(350) (233) (171) (520) (242) (412) K a = 6 K a = 5 K a = 10, 11 K a = 9, 10 K a = 12 K a = 11 K a = 7,8,9 K a = 6,7,8 K a = 5,6,7 K a = 4,5,6 K a = 3 K a = 5 E/hc (cm -1 ) K a = 0,1,2 (313)

Calculated spectra of in 3 cases (normalisation on observed lines in the 6155 cm -1 region) All  of A and B bands All  of B band;  A =0 Only  1 for B band (  5 =0):

Nature of the work Vibrational Assignment Band centerNumber of transitions J maxK a max completed completed completed completed * completed completed * completed In progress In progress In progress In progress In progress completed completed * completed * ; In progress TOTAL : 5959 Assigned transitions in the range 6000—6900cm-1

Improvements since 2006  1. Theoretical predictions of rotational constants available  2.Experimental range extended  3.Model of B type bands improved  4. Obvious: a lot of work

Observed and calculated spectrum of the band in the 6156 – 6157 cm -1 range * * Observed Calculated * CO Wavenumber (cm -1 ) Absorption Coefficient (a.u.)

(511)(233)(440) Number of transitions Number of levels J max25 K a max109 EVEV (94) (16) (45) A-(B+C)/ (42) (13) (44) (B+C)/ (74) (86) (14) (B-C)/ (40) (60) (16) D K  (60) (12) (g) D JK  (g) (20) (g) D J  (13) (20) (g) rms (10 -3 cm -1 ) Summary of the observations and Spectroscopic parameters of the effective Hamiltonian model for the (511) and (233) vibrational states of 16 O 3 (in cm -1 ).

Comparison between Obs. and Calc. spectrum in the P branch of (J’= 14) Observed spectrum Calculated spectrum CO 2 H2OH2O

( ) the weakest band observed so far 3  cm -1 molecule cm -2 Observed spectrum Calculated (331)-(000) Calculated (124)-(000) CO 2

JKaKcEobsNb EE o-c Example of derived energy levels with number of transitions, error and O-C in case of the (331) state JKaKcEobsNb EE o-c

Freq. Int. E low vup J Ka Kc vlow J Ka Kc isotope E E E E E E E E E E E E E E E E E E E E E E E E E E E Example of final line-list for the band.

Final comparison between Observed and Calculated spectrum ( ) Calculated Observed

Sym.Exp.(v 1 v 2 v 3 ) 0 a S( cm/mol) b Transitions c J maxK a maxLevels B (133) / /43332/389/9173/264 B (411) /29434/3411/11168/179 A (034) B (105) A (510) B (223) A (124) B (331) B (025) A (124) B (501) A (430) B (223) A (044) B (421) / d 34/362/834/169 B (205) /41935/356/11156/220 B (233) A (520) e A (242) B (035) B (511) B (233) Total :7684Total :4057

  + 2    18 O  + 3  +    16 O 3 Absorption coefficient (10 -6 cm -1 ) Absorption coefficient (a.u.) wavenumber (cm -1 ) Synthetic spectra for 16 O 3 and 18 O 3 corresponding to the same bands

Sym.Exp. (cm -1 )(Obs.-Calc.) a P 1 (%) b W1W1 P 2 (%)W2W2 P 3 (%)W3W3 B (025) (223) 0 9.1(313) 0 A (430) 0 9.8(322) 0 8.7(124) 0 B (501) (303) 0 3.0(105) 0 B (115) (313) (223) 0 Sym.Exp. (cm -1 ) (Obs.-Calc.) a P 1 (%) b W1W1 P 2 (%)W2W2 P 3 (%)W3W3 B (025) (313) (115) 0 A (430) (214) 0 8.8(322) 0 B (501) (303) 0 3.3(105)0 B (223) (313)018.8(115)0 Notes: a Difference between the vibrational energy values obtained from the experimental data reduction with variational predictions calculated [1] from the PES of Ref. [2]. b Columns 4-9 represent three major contributions for the decomposition of corresponding wave functions derived from the potential function [2, 3] in normal mode coordinates q 1, q 2, q 3 using 10th order Contact Transformations [1]. Columns Pn’s indicate the mixing coefficients (in %) of  eff in the harmonic normal mode basis. Columns Wn’s indicate the corresponding vibration normal mode quantum numbers (v 1 v 2 v 3 ) 0. n is the order of the contribution. The subscript “0” of (v 1 v 2 v 3 ) 0 means the normal mode representation. Comparison between observed and predicted band centers for 18 O 3 and 16 O 3 corresponding to the previous figure 18 O 3 16 O 3

Conclusion   As the energy increases, the number of interacting levels becomes larger and larger. Then a confident assignment accounting for interacting “Dark” states is almost impossible without good predictions of the band centers and rotational constants. The point is that these good predictions allow the assignments of weaker and weaker bands (lines of a few cm/molecule become possible). The observation of the band is a typical example.   With this work, near dissociation, we may say that O 3 is now one of the most studied molecule, where the energy levels of 74 rovibrational states are obtained up to 7500 cm -1 for 16 O 3, and as much for 18 O 3.   For all this work, including isotopomers studies, and in addition to the precise knowledge of molecular properties of ozone (Potential energy surface and Dipole Moment Surface), there are at least two direct fields of applications:   Non L.T.E   Progress in the understanding of the anomalous enrichment of ozone isotopes in the atmosphere.