Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.

Slides:



Advertisements
Similar presentations
Russell and Norvig Chapter 7
Advertisements

Logic.
Artificial Intelligence Knowledge-based Agents Russell and Norvig, Ch. 6, 7.
Logic in general Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language.
Knowledge Representation & Reasoning.  Introduction How can we formalize our knowledge about the world so that:  We can reason about it?  We can do.
1 Problem Solving CS 331 Dr M M Awais Representational Methods Formal Methods Propositional Logic Predicate Logic.
Knowledge Representation & Reasoning (Part 1) Propositional Logic chapter 6 Dr Souham Meshoul CAP492.
Logical Agents Chapter 7. Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential.
Logical Agents Chapter 7.
Carla P. Gomes CS4700 CS 4700: Foundations of Artificial Intelligence Carla P. Gomes Module: Intro to Logic (Reading R&N: Chapter.
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Knowledge Representation & Reasoning (Part 1) Propositional Logic chapter 5 Dr Souham Meshoul CAP492.
Logical Agents Chapter 7 Feb 26, Knowledge and Reasoning Knowledge of action outcome enables problem solving –a reflex agent can only find way from.
Rutgers CS440, Fall 2003 Propositional Logic Reading: Ch. 7, AIMA 2 nd Ed. (skip )
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
Logical Agents Chapter 7 (based on slides from Stuart Russell and Hwee Tou Ng)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7.
Logical Agents. Knowledge bases Knowledge base = set of sentences in a formal language Declarative approach to building an agent (or other system): 
February 20, 2006AI: Chapter 7: Logical Agents1 Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent.
Logical Agents (NUS) Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter (this lecture, Part I) Chapter 7.5.
‘In which we introduce a logic that is sufficent for building knowledge- based agents!’
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Dr. Shazzad Hosain Department of EECS North South Universtiy Lecture 04 – Part A Knowledge Representation and Reasoning.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
1 Problems in AI Problem Formulation Uninformed Search Heuristic Search Adversarial Search (Multi-agents) Knowledge RepresentationKnowledge Representation.
An Introduction to Artificial Intelligence – CE Chapter 7- Logical Agents Ramin Halavati
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes Jan 17, 2012.
Logical Agents Chapter 7. Knowledge bases Knowledge base (KB): set of sentences in a formal language Inference: deriving new sentences from the KB. E.g.:
1 Logical Agents CS 171/271 (Chapter 7) Some text and images in these slides were drawn from Russel & Norvig’s published material.
1 Logical Agents Chapter 7. 2 A simple knowledge-based agent The agent must be able to: –Represent states, actions, etc. –Incorporate new percepts –Update.
Knowledge Representation Lecture # 17, 18 & 19. Motivation (1) Up to now, we concentrated on search methods in worlds that can be relatively easily represented.
Logical Agents Chapter 7. Outline Knowledge-based agents Logic in general Propositional (Boolean) logic Equivalence, validity, satisfiability.
1 Logical Agents Russell & Norvig Chapter 7. 2 Programming Language Moment We often say a programming language is procedural or declarative. What is meant.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 10 of 42 Wednesday, 13 September.
1 Logical Agents Chapter 7. 2 Logical Agents What are we talking about, “logical?” –Aren’t search-based chess programs logical Yes, but knowledge is used.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem.
Logical Agents Russell & Norvig Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean)
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Logical Agents Chapter 7 Part I. 2 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic.
1 Knowledge Representation Logic and Inference Propositional Logic Vumpus World Knowledge Representation Logic and Inference Propositional Logic Vumpus.
1 Intro to AI Logical Agents. 2 Intro to AI Outline Logic Efficient satisfiability testing by backtracking search Efficient satisfiability testing by.
Logical Agents Chapter 7. Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence,
Artificial Intelligence Logical Agents Chapter 7.
Logical Agents. Inference : Example 1 How many variables? 3 variables A,B,C How many models? 2 3 = 8 models.
LOGICAL AGENTS CHAPTER 7 AIMA 3. OUTLINE  Knowledge-based agents  Wumpus world  Logic in general - models and entailment  Propositional (Boolean)
CS666 AI P. T. Chung Logic Logical Agents Chapter 7.
Logical Agents. Outline Knowledge-based agents Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability.
Propositional Logic: Logical Agents (Part I)
EA C461 – Artificial Intelligence Logical Agent
Logical Agents Chapter 7.
EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS
Logical Agents Chapter 7 Selected and slightly modified slides from
Logical Agents Reading: Russell’s Chapter 7
Logical Agents Chapter 7.
Artificial Intelligence
Artificial Intelligence: Logic agents
Knowledge and reasoning – second part
Logical Agents Chapter 7.
Knowledge Representation I (Propositional Logic)
LECTURE 06 Logical Agent Course : T0264 – Artificial Intelligence
Logical Agents Prof. Dr. Widodo Budiharto 2018
Presentation transcript:

Logical Agents Chapter 7

Why Do We Need Logic? Problem-solving agents were very inflexible: hard code every possible state. Search is almost always exponential in the number of states. Problem solving agents cannot infer unobserved information.

Knowledge & Reasoning To address these issues we will introduce A knowledge base (KB): a list of facts that are known to the agent. Rules to infer new facts from old facts using rules of inference. Logic provides the natural language for this.

Knowledge Bases Knowledge base: – set of sentences in a formal language. Declarative approach to building an agent: –Tell it what it needs to know. –Ask it what to do  answers should follow from the KB.

Wumpus World PEAS description Performance measure –gold: +1000, death: –-1 per step, -10 for using the arrow Environment –Squares adjacent to wumpus are smelly –Squares adjacent to pit are breezy –Glitter iff gold is in the same square –Shooting kills wumpus if you are facing it –Shooting uses up the only arrow –Grabbing picks up gold if in same square –Releasing drops the gold in same square Sensors: Stench, Breeze, Glitter, Bump, Scream Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization Fully Observable No – only local perception Deterministic Yes – outcomes exactly specified Episodic No – things we do have an impact. Static Yes – Wumpus and Pits do not move Discrete Yes Single-agent? Yes – Wumpus is essentially a natural feature

Exploring a wumpus world

Exploring a Wumpus world If the Wumpus were here, stench should be here. Therefore it is here. Since, there is no breeze here, the pit must be there We need rather sophisticated reasoning here!

Exploring a wumpus world

Logic We used logical reasoning to find the gold. Logics are formal languages for representing information such that conclusions can be drawn Syntax defines the sentences in the language Semantics define the "meaning" of sentences; –i.e., define truth of a sentence in a world E.g., the language of arithmetic –x+2 ≥ y is a sentence; x2+y > {} is not a sentence syntax – –x+2 ≥ y is true in a world where x = 7, y = 1 –x+2 ≥ y is false in a world where x = 0, y = 6 semantics

Entailment Entailment means that one thing follows from another: KB ╞ α Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true –E.g., the KB containing “the Giants won and the Reds won” entails “The Giants won”. –E.g., x+y = 4 entails 4 = x+y

Models Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated We say m is a model of a sentence α if α is true in m M(α) is the set of all models of α Then KB ╞ α iff M(KB)  M(α) –E.g. KB = Giants won and Reds won α = Giants won

Entailment in the wumpus world Consider possible models for KB assuming only pits and a reduced Wumpus world Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Wumpus models All possible models in this reduced Wumpus world.

Wumpus models KB = all possible wumpus-worlds consistent with the observations and the “physics” of the Wumpus world.

Wumpus models α 1 = "[1,2] is safe", KB ╞ α 1, proved by model checking

Wumpus models α 2 = "[2,2] is safe", KB ╞ α 2

Inference Procedures KB ├ i α = sentence α can be derived from KB by procedure i Soundness: i is sound if whenever KB ├ i α, it is also true that KB╞ α (no wrong inferences, but maybe not all inferences) Completeness: i is complete if whenever KB╞ α, it is also true that KB ├ i α (all inferences can be made, but maybe some wrong extra ones as well)

Propositional logic: Syntax Propositional logic is the simplest logic – illustrates basic ideas The proposition symbols P 1, P 2 etc are sentences –If S is a sentence,  S is a sentence (negation) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (conjunction) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (disjunction) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (implication) –If S 1 and S 2 are sentences, S 1  S 2 is a sentence (biconditional)

Propositional logic: Semantics Each model/world specifies true or false for each proposition symbol E.g. P 1,2 P 2,2 P 3,1 falsetruefalse With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model m:  Sis true iff S is false S 1  S 2 is true iff S 1 is true and S 2 is true S 1  S 2 is true iff S 1 is true or S 2 is true S 1  S 2 is true iffS 1 is false orS 2 is true i.e., is false iffS 1 is true andS 2 is false S 1  S 2 is true iffS 1  S 2 is true andS 2  S 1 is true Simple recursive process evaluates an arbitrary sentence, e.g.,  P 1,2  (P 2,2  P 3,1 ) = true  (true  false) = true  true = true

Truth tables for connectives OR: P or Q is true or both are true. XOR: P or Q is true but not both. Implication is always true when the premises are False!

Wumpus world sentences Let P i,j be true if there is a pit in [i, j]. Let B i,j be true if there is a breeze in [i, j]. start:  P 1,1  B 1,1 B 2,1 "Pits cause breezes in adjacent squares" B 1,1  (P 1,2  P 2,1 ) B 2,1  (P 1,1  P 2,2  P 3,1 )

Inference by enumeration Enumeration of all models is sound and complete. For n symbols, time complexity is O(2 n )... We need a smarter way to do inference! In particular, we are going to infer new logical sentences from the data-base and see if they match a query.

Logical equivalence To manipulate logical sentences we need some rewrite rules. Two sentences are logically equivalent iff they are true in same models: α ≡ ß iff α╞ β and β╞ α You need to know these !

Validity and satisfiability A sentence is valid if it is true in all models, e.g., True,A  A, A  A, (A  (A  B))  B Validity is connected to inference via the Deduction Theorem: KB ╞ α if and only if (KB  α) is valid A sentence is satisfiable if it is true in some model e.g., A  B, C A sentence is unsatisfiable if it is false in all models e.g., A  A Satisfiability is connected to inference via the following: KB ╞ α if and only if (KB  α) is unsatisfiable (there is no model for which KB=true and is false)