1 Multi-Rate Digital Signal Processing Y. C. Jenq, Ph.D. Department of Electrical & Computer Engineering Portland State University Portland, Oregon 97207.

Slides:



Advertisements
Similar presentations
Y. C. Jenq1 Non-uniform Sampling Signals and Systems (A/D & D/A Converters) Y. C. Jenq Department of Electrical & Computer Engineering Portland State University.
Advertisements

Husheng Li, UTK-EECS, Fall  An ideal low pass filter can be used to obtain the exact original signal.
Signal and System IIR Filter Filbert H. Juwono
Multistage Implementation Problem: There are cases in which the filter requirements call for a digital filter of high complexity, in terms of number of.
Design of a Power-Efficient Interleaved CIC Architecture for Software Defined Radio Receivers By J.Luis Tecpanecatl-Xihuitl, Ruth Aguilar-Ponce, Ashok.
Decimation Filter A Design Perspective
©Alex Doboli 2006  Analog to Digital Converters Alex Doboli, Ph.D. Department of Electrical and Computer Engineering State University of New York at.
Qassim University College of Engineering Electrical Engineering Department Course: EE301: Signals and Systems Analysis The sampling Process Instructor:
SOME SIMPLE MANIPULATIONS OF SOUND USING DIGITAL SIGNAL PROCESSING Richard M. Stern demo August 31, 2004 Department of Electrical and Computer.
1 Copyright © 2001, S. K. Mitra Polyphase Decomposition The Decomposition Consider an arbitrary sequence {x[n]} with a z-transform X(z) given by We can.
4.4.3 Interpolation Using Unchanged Key Values It is often necessary to retain the values from the input sequence y(m) in the interpolated x(n). without.
Multirate Digital Signal Processing
Department of Electrical & Computer Engineering 1 ES585a - Computer Based Power System Protection Course by Dr.T.S.Sidhu - Fall 2005 Class discussion presentation.
Converting Fractions we have looked at converting FRACTIONS to DECIMALS. We can also show fractions as PERCENTAGES. PER CENT means OUT OF (per)
Over-Sampling and Multi-Rate DSP Systems
ACCESS IC LAB Graduate Institute of Electronics Engineering, NTU Multirate Processing of Digital Signals: Fundamentals VLSI Signal Processing 台灣大學電機系 吳安宇.
Finite Impuse Response Filters. Filters A filter is a system that processes a signal in some desired fashion. –A continuous-time signal or continuous.
4. Multirate Systems and their Applications. We compute here … and throw away most of them here!!!! Inefficient Implementation of Downsampling.
Fractions and Decimals
Digital Pulse Amplitude Modulation (PAM)
Tamal Bose, Digital Signal and Image Processing © 2004 by John Wiley & Sons, Inc. All rights reserved. Figure 5-1 (p. 321) Decimation by a factor of M.
Multirate Signal Processing
Chapter 8 Design of infinite impulse response digital filter.
Copyright © 2001, S. K. Mitra Digital Filter Structures The convolution sum description of an LTI discrete-time system be used, can in principle, to implement.
System Function of discrete-time systems
Tarbiat Modares University, Faculty of Electrical & Computer Engineering, Hassan Ghassemian بسم الله الرحمن الرحيم Tarbiat Modares University Faculty of.
Professor A G Constantinides 1 Interpolation & Decimation Sampling period T, at the output Interpolation by m: Let the OUTPUT be [i.e. Samples exist at.
Copyright © 2003 Texas Instruments. All rights reserved. DSP C5000 Chapter 20 Polyphase FIR Filter Implementation for Communication Systems.
Write Equivalent Fractions
Recursive Average The recursive average is a very efficient way to obtain a time-weighted average by low-pass filtering the signal. y[n] = (1-a)y[n-1]
Quiz 1 Review. Analog Synthesis Overview Sound is created by controlling electrical current within synthesizer, and amplifying result. Basic components:
Channel Spectral Characteristics Some Polyphase Filter Options.
Han Liu Supervisor: Seok-Bum Ko Electrical & Computer Engineering Department 2010-Mar-9.
BIEN425 – Lecture 15 By the end of this lecture, you should be able to: –Design and implement integer decimators and interpolators –Design and implement.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE345S Real-Time Digital Signal Processing Lab Fall.
1 Today's lecture −Cascade Systems −Frequency Response −Zeros of H(z) −Significance of zeros of H(z) −Poles of H(z) −Nulling Filters.
. Fix-rate Signal Processing Fix rate filters - same number of input and output samples Filter x(n) 8 samples y(n) 8 samples y(n) = h(n) * x(n) Figure.
P. 1 DSP-II Digital Signal Processing II Lecture 6: Maximally Decimated Filter Banks Marc Moonen Dept. E.E./ESAT, K.U.Leuven
Lecture 16: Sampling of Continuous-Time Signals Instructor: Dr. Ghazi Al Sukkar Dept. of Electrical Engineering The University of Jordan
4 BIT ADC BIT STREAM THE SOUND IS MEASURED (SAMPLED) AT REGULAR INTERVALS AND GIVEN A VALUE FROM 0 TO 15. THIS BINARY VALUE IS SENT TO A PARALLEL TO SERIAL.
Fractions and Decimal Fractions Fractions Decimal Fractions
Decimation & Interpolation (M=4) 0  /4  /4  /2  /4  /4  /2  /4  /4  /2  /4  M=4 M M Bandwidth -  /4 Figure 12 USBLSB.
Sampling Rate Conversion by a Rational Factor, I/D
Finite Impuse Response Filters. Filters A filter is a system that processes a signal in some desired fashion. –A continuous-time signal or continuous.
VLSI SP Course 2001 台大電機吳安宇 Multirate Processing of Digital Signals: Fundamentals For NTUEE VLSI Signal Processing Course Instructor: 吳安宇教授.
Application of digital filter in engineering
بسم الله الرحمن الرحيم Lecture (1) Introduction to DSP Dr. Iman Abuel Maaly University of Khartoum Department of Electrical and Electronic Engineering.
Sampling and DSP Instructor: Dr. Mike Turi Department of Computer Science & Computer Engineering Pacific Lutheran University.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Spring.
Software Defined Radio PhD Program on Electrical Engineering
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
EEE4176 Applications of Digital Signal Processing
Applications of Multirate Signal Processing
Convert to a Percent %.
蔡宗珉 : Multi-stage Filter Implementation
POLYPHASE IIR FILTER.
Chapter 8 Design of Infinite Impulse Response (IIR) Digital Filter
Multi-Resolution Analysis
Jeopardy Operations with Integers With Decimals Fractions Solving Word
Changing the Sampling Rate
Digital Pulse Amplitude Modulation (PAM)
The Z-Transform of a given discrete signal, x(n), is given by:
Richard M. Stern demo January 12, 2009
Convert a TERMINATING DECIMAL to a FRACTION
Multirate Processing of Digital Signals: Fundamentals
Chapter 9 Advanced Topics in DSP
Converting between Percentages, Decimals and Fractions
EQUATIONS OF LINES IN STANDARD FORM
Homework Due Friday.
Signals and Systems Lecture 18: FIR Filters.
Presentation transcript:

1 Multi-Rate Digital Signal Processing Y. C. Jenq, Ph.D. Department of Electrical & Computer Engineering Portland State University Portland, Oregon

2 Decimation System (Down Sampling) M x d [n]x[n] M=3

3 x d [n] = x[nM],where M is an integer X d (z) =  n x d [n]z -n =(1/M)  m=0,(M-1) X(z (1/M) e -jm2  /M ) X d ( e j  ) =(1/M)  m=0,(M-1) X(e j(  -m2  /M ) Decimation System (Down Sampling)

4 0  0 22 M=3 0  X(e j  )X(e j  ) X(e j(  ) X(e j(  ) X d (e j  ) =(1/M)  m=0,(M-1) X(e j(  -m2  /M ) 44 22

5 Sampling Rate Reduction System M y d [n] x[n] Low-pass filter with cutoff at  /M y[n]

6 Interpolation System (Up Sampling) L x u [n]x[n] L=3

7 Interpolation System (Up Sampling) x u [n] = x[n/L],n = 0, ±L, ±2L, … 0,otherwise X u (z) =  n x u [n]z -n = X(z L ) X u ( e j  ) = X(e j  L )

8 Interpolation System (Up Sampling) 0 2  L=3 X(e j  L )X(e j  ) X u ( e j  ) = X(e j  L )

9 L Sampling Rate Increase System y[n] x[n] Low-pass filter with cutoff at  /L x u [n]

10 Decimation and Interpolation x[n] M M y[n] M=3

11 Decimation and Interpolation x[n] M M LetW M = e -j2  /M Y(z)= (1/M)  m=0,(M-1) X(ze -jm2  /M ) = (1/M)  m=0,(M-1) X(zW M m ) Y(e j  )= (1/M)  m=0,(M-1) X(e j(  -m2  /M) ) y[n]

12 Decimation and Interpolation Y(e j  )= (1/M)  m=0,(M-1) X(e j(  -jm2  /M) )    M=3 0 X(e j  ) X(e j(  ) X(e j(  ) 2 

13 Fractional Sampling Rate Change L y[n] x[n] Low-pass filter with cutoff at min(  /L,  /M) M

14 Block Interconnection Identities M C M C  M M M  Multiply by a Constant

15 Block Interconnection Identities M M M 

16 LC LC  L L L  Block Interconnection Identities

17 Block Interconnection Identities L L L 

18 Multi-Rate Identities M H(z M ) M  H(z) LH(z L ) L  H(z)

19 Multi-rate Switch Models    n = 0, 3, 6,… n = -1, 2, 5,… n = -2, 1, 4,… x[n]

20 Multi-rate Switch Models   x[n]  x[3n] x[3n-1] x[3n-2] Serial to Parallel Converter x[n]

21 Multi-rate Switch Models  n = 2, 5, 8,… n = 1, 4, 7,… n = 0, 3, 6,…   x 1 [n] x 2 [n] x 3 [n]

22 Multi-rate Switch Models    x 1 [n] x 2 [n] x 3 [n] x[3n+2] x[3n+1] x[3n] Parallel to Serial Converter x[n]

23 Poly-phase Structure of Decimation Filter 3   x[n] D 0 (z 3 ) D 2 (z 3 ) D 1 (z 3 ) H(z) = D 0 (z 3 )+ z -1 D 1 (z 3 )+z -2 D 2 (z 3 ) y[n] y[3n] H(z) 3 x[n] y[3n] y[n]

Poly-phase Structure of Decimation Filter   x[n] D 0 (z 3 ) D 2 (z 3 ) D 1 (z 3 ) 3 y[3n] H(z) = D 0 (z 3 )+ z -1 D 1 (z 3 )+z -2 D 2 (z 3 )

  x[n] D 0 (z) D 2 (z) D 1 (z) 3 y[3n] Poly-phase Structure of Decimation Filter H(z) = D 0 (z 3 )+ z -1 D 1 (z 3 )+z -2 D 2 (z 3 )

26 x[3n] x[3n-1] x[3n-2] Serial to Parallel Converter x[n] Poly-phase Structure of Decimation Filter D 0 (z) D 2 (z) D 1 (z) y[3n] H(z) = D 0 (z 3 )+ z -1 D 1 (z 3 )+z -2 D 2 (z 3 )

27 Poly-phase Structure of Interpolation Filter 3     x[n] H(z) = z -2 I 0 (z 3 )+ z -1 I 1 (z 3 )+I 2 (z 3 ) y[n] I 0 (z 3 ) I 2 (z 3 ) I 1 (z 3 ) H(z) 3 x[n] y[n]

28 Poly-phase Structure of Interpolation Filter 3 x[n] H(z) = z -2 I 0 (z 3 )+ z -1 I 1 (z 3 )+I 2 (z 3 ) y[n] I 0 (z 3 ) I 2 (z 3 ) I 1 (z 3 ) 3 3  

29 Poly-phase Structure of Interpolation Filter 3 x[n] H(z) = z -2 I 0 (z 3 )+ z -1 I 1 (z 3 )+I 2 (z 3 ) I 0 (z) I 2 (z) I 1 (z) 3 3 y[n]  

30 Poly-phase Structure of Interpolation Filter x[n] H(z) = z -2 I 0 (z 3 )+ z -1 I 1 (z 3 )+I 2 (z 3 ) I 0 (z) I 2 (z) I 1 (z) y[3n+2] y[3n+1] y[3n] Parallel to Serial Converter y[n]

31 Poly-phase Structure of Fractional Sampling Rate Filter 3     x[n] F 0 (z 3 ) F 2 (z 3 ) F 1 (z 3 ) 4 y[n] H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 ) (M=4, L=3)

32 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3) 3     x[n] F 0 (z) F 2 (z) F 1 (z) 4 y[n] 3 3 H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 )

33 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3) 3   x[n] F 0 (z) F 2 (z) F 1 (z) 4 y[n] 3 3 H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 )    

34 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3) 3   x[n] F 0 (z) F 2 (z) F 1 (z) y[n] 3 3 H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 )     4 4 4

35 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3) 3   x[n] F 0 (z) F 2 (z) F 1 (z) y[n] 3 3 H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 )     4 4 4

36 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3) 3   x[n] F 0 (z) F 2 (z) F 1 (z) y[n] 3 3 H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 )     4 4 4

37 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3)   x[n]F 0 (z) F 2 (z) F 1 (z) y[n] H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 ) Parallel to Serial Converter

38 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3)   x[n]F 0 (z) F 2 (z) F 1 (z) y[n] H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 ) F k (z) = F k0 (z 4 )+ z -1 F k1 (z 4 )+z -2 F k2 (z 4 )+z -3 F k3 (z 4 ) Parallel to Serial Converter

39 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3)   x[n] F 2 (z) F 1 (z) y[n] H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 ) F k (z) = F k0 (z 4 )+ z -1 F k1 (z 4 )+z -2 F k2 (z 4 )+z -3 F k3 (z 4 ) 4 4 Parallel to Serial Converter Serial to Parallel Converter F k0 F k1 F k2 F k3

40 Poly-phase Structure of Fractional Sampling Rate Filter (M=4, L=3)    x[n] F 2 (z) F 1 (z) y[n] H(z) = z -2 F 0 (z 3 )+ z -1 F 1 (z 3 )+F 2 (z 3 ) F k (z) = F k0 (z 4 )+ z -1 F k1 (z 4 )+z -2 F k2 (z 4 )+z -3 F k3 (z 4 ) 4 4 Parallel to Serial Converter Serial to Parallel Converter F k0 F k1 F k2 F k3  

41 Efficient Design for Very Narrow-band Filters G(z M ) x[n] y[n]H(z) x[n]y[n]F(z)

42 Efficient Design for Very Narrow-band Filters G(z M ) H(z) F(z) 0  G(z) 0  0  0   p  s pp  s ss pp ss  Desired passband Images pp

43 Efficient Design for Very Narrow-band Filters G(z M ) x[n]y[n]F(z) M G(z ) x[n]y[n]F(z) M G(z ) x[n] y[n] F 0 (z ) M z -1 M F 1 (z ) +

44 Efficient Design for Very Narrow-band Filters G(z ) x[n] y[n] F 0 (z ) F 1 (z ) + Serial to Parallel Converter F M-1 (z )

45 Multi-stage Decimation System H(z ) x[n]y[n] M G(z ) x[n] y[n] F(z) M 1 G(z M 1 ) x[n]y[n]F(z) M 1 M 2 M 2

46 Multi-stage Decimation System x[n] y[n] F 0 (z ) F 1 (z ) + Serial to Parallel Converter F M 1 -1 (z ) G 0 (z ) G 1 (z ) + Serial to Parallel Converter G M 2 -1 (z )

47 Multi-stage Interpolation System H(z ) x[n]y[n] L G(z ) x[n] y[n] F(z) L 1 G(z L 1 ) x[n]y[n]F(z) L 1 L 2 L 2

48 Multi-stage Interpolation System x[n] y[n] F 0 (z ) F 1 (z ) F L 1 -1 (z ) G 0 (z ) G 1 (z ) Parallel to Serial Converter G L 2 -1 (z ) Parallel to Serial Converter