Teaching Gear Theory to Students

Slides:



Advertisements
Similar presentations
Teacher Professional Development Spring, 2002
Advertisements

Structures and Mechanisms.
Gears.
Engineering Sciences and Technology
Gears, Gears and More Gears
All figures taken from Design of Machinery, 3rd ed. Robert Norton 2003
Geartrains Materials taken from several sources including: Building Robots with LEGO Mindstorms by Ferrari, Ferrari, and Hempel 1.
Engineering H191 - Drafting / CAD Gateway Engineering Education Coalition Lab 6P. 1Autumn Quarter Gears Lab 6.
Construct a boom crane Graphic retrieved from, on 05/19/2010.
Geartrains Materials taken from several sources including: Building Robots with LEGO Mindstroms by Ferrari, Ferrari, and Hempel.
GEARS Gears and shafts are basically wheel and axles, but gears have cogs, or teeth on their circumference.
The Basics of Physics.
Two-Gear Gear Trains Driving gear is attached to motor Driven gear is attached to wheel Gears spurs (teeth) mesh together Gears rotate in opposite directions.
Engineering H191 - Drafting / CAD Gateway Engineering Education Coalition Lab 6P. 1Autumn Quarter Gears Lab 6.
Mechanical Transmissions
Geartrains Materials taken from several sources including: Building Robots with LEGO Mindstorms by Ferrari, Ferrari, and Hempel.
J.M. Gabrielse Gears & VEX J.M. Gabrielse. Agenda Essential Terminology Gear Types Direction Gearing Up/Gearing DownGearing UpGearing Down Gear Ratios.
Transfer of energy is accomplished through three basic means: The gear, the belt, and the chain. Statics deals with forces and their effect on a body at.
Compound Gears Unit 6.
Sci 701 Unit 6 As learned in Unit 5: Speed, Power, Torque, and DC Motors, a motor can generate a set amount of power. Introduction to Gears Since there.
Forging new generations of engineers. GEARS Presentation Objectives Identify parts of the gear trainer Identify gears Identify gear terminology Identify.
Gears, Chains and Sprockets Unit 6. Introduction Motors can only create a set amount of power. Motors can only create a set amount of power. There is.
Gears, Gears and More Gears. What is a gear? A gear is a wheel with teeth that mesh together with other gears. Gears change the speed torque (rot. force)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9-1 Gears – The Purpose Sports cars go fast (have speed) but.
Two-Gear Gear Trains Using different size gear allows change in speed
After completing Unit 6: Gears, Chains, and Sprockets, you will be able to: Identify whether a gear reduction causes a speed reduction or a speed increase,
What are Gears? Gears are wheels or cylinders with teeth that mesh with the teeth of other gears to transmit motion Gears are used in everything from automobiles.
Spur Gears DIFFERENT TYPES OF GEARS What is a gear?
Gears A gear is a wheel with teeth.
What are Gears? Gears are wheels or cylinders with teeth that mesh with the teeth of other gears to transmit motion Gears are used in everything from automobiles.
Topic 2: The Wheel and Axle, Gears, and Pulleys
Mechanical Power Trasnmission. Introduction In this Unit students were introduced to some of the concepts of classical mechanics, and also of DC motors.
Quick-fire: If an open ended question has multiple ways of solving the problem, what is a closed ended question? Give one example.
Different Types of Robots
What are Gears? Gears are wheels or cylinders with teeth that mesh with the teeth of other gears to transmit motion Gears are used in everything from automobiles.
Gears & VEX.
Power Transfer using GEARS Dean Celini Mentor FRC Team /10/2016.
Gearing.
Mechanical Power Transmission
Mechanisms Mechanisms PLTW Gateway
Automatic Transmissions and Transaxles
Gears & VEX.
Gearing For LEGO Robots
What is mechanical advantage?
Gears & VEX Adapted: Dec 2015 HEP.
GEARS.
GEAR CONTENTS POWER TRANSMISSION GEAR TYPES OF GEARS NOMENCLATURE
Manual Drivetrains and Axles
גלגלי מניע גדול, מסובב גלגל מונע קטן, והתוצאה היא הגברה של מהירות
Two-Gear Gear Trains Using different size gear allows change in speed
Mechanisms PLTW Gateway Unit 2 – Lesson 2.2 – Mechanical Systems
Mechanisms and Algorithms
Mechanical Engineering: Gears
Gearing for lego robots
Gearing For LEGO Robots
Gears, Gears and More Gears
Structures and Mechanisms.
GEARS.
Structures and Mechanisms.
Gears A gear is a rotating machine part, having cut like teeth, which fit together with another toothed part to transmit rotation. Geared devices can change.
Two-Gear Gear Trains Using different size gear allows change in speed
Two-Gear Gear Trains Using different size gear allows change in speed
Two-Gear Gear Trains Using different size gear allows change in speed
Gears, Gears and More Gears
Mechanisms Automation and Robotics VEX
Forging new generations of engineers
Geartrains Materials taken from several sources including: Building Robots with LEGO Mindstroms by Ferrari, Ferrari, and Hempel.
Geartrains Materials taken from several sources including: Building Robots with LEGO Mindstroms by Ferrari, Ferrari, and Hempel.
TOOTHED WHEEL
Presentation transcript:

Teaching Gear Theory to Students For FLL and FIRST

What We Will Talk About Discussion of gears especially for FLL Will have parallel topic for FIRST For LEGO® gears, will use LDraw names Will have a demo area here on the gears

Main Lessons to Teach in Gears Terminology in Gears Identification of Gears (Types) Basic Properties of Gears Gear Geometry Gear Analysis (Gear Ratios)

Basic Gear Types in LEGO® - 1 In the Robotic Invention System 2.0 (t=tooth) Spur gears (8t, 16t, 24t, 40t) Crown/hybrid gears (24t) Bevel gear (12t) White Clutch gear (24t) Differential gear (16t & 24t on casing/shell) Worm gear (1t) Rack gear

Pictures of Gears in RIS 2.0

Basic Gear Types in LEGO® - 2 In Sets Other than RIS 2.0 (still available) Bevel Gear (20t) Double Bevel Gears (12t, 20t, 36t not pictured) Turntable (56t) Old Differential Gear (24t on casing) Technic Gear 16t with Clutch

Pictures of Gears NOT in RIS 2.0

Essential Terminology Driver – gear with applied force Follower – gear doing useful work Idler – gear turned by driver & turns follower Gear Train – many gears in a row Geared Up – large driver, small follower to speed gear train up. Geared Down – small driver, large follower to increase torque (turning force) Compound gears – combination of gears and axles where one axle has 2 gears often of different sizes.

Basic Gear Properties When 2 gears mesh, driver makes follower turn in opposite direction Need odd number of idler gears to make driver and follower turn in same direction. Need 0 or even number of idlers to make driver and follower turn in opposite direction When large driver turns small follower, its called gearing up and speeds up gear train When small driver turns large follower, its called gearing down and increases torque (turning force).

Basic Brick Geometry One plate is 1.2/3 = 0.4 studs high So each 5 plates will be 2 studs high (0.4 x 5)

Gear Geometry Radius D + Radius F Follower Driver

Gears (Spur) Meshing Horizontally 1 2 3 Possible to mesh at stud lengths of 1 through 5 4 5

Gears (Spur) Meshing Vertically 2 4 Using 24 tooth and 8 tooth at distance of 2 stud lengths Using 24 tooth and 40 tooth at distance of 4 stud lengths Mesh at even stud lengths for best results

What happens with improper mesh? When 2 gears are meshed, there is a certain amount of built in “play” between them called backlash. When 2 gears are not meshed properly i.e. within specification you get too much backlash called slop OR too little backlash and they are jammed together and this creates friction.

Gears (Spur) Meshing Diagonally Slop or friction typically occurs when you make gears mesh diagonally Some Schools of Thought Don’t do it as it makes gears out of specification and something may go wrong e.g. gear teeth skipping Do it as it gives you more creativity in meshing gears in different configurations. Do it but within some tolerance e.g. under 1%

Gear Guide in FLL Manual pg 49 4.1% 2.4% -0.9% Vert SqVert Hori SqHori AddSqs Dist Bet Holes RadTop RadBott Dist Ctrs Diff Percent 1.2 1.44 1 2.44 1.56 0.5 1.5 0.0620 4.1 1.6 2.56 2 4 6.56 2.5 0.0612 2.4 2.8 7.84 8.84 2.97 3 -0.0268 -0.9

What is the best type of gear teeth? Gears need to have teeth that mesh properly otherwise they will not work. Best is a curve on the teeth that provides for constant velocity when gear turning Involute curves modeled on the teeth provides this advantage and is the basis for most modern gears.

Gear Tooth Geometry -2 The involute curve can be generated by wrapping a string around a circle. Gear Tooth Shape

Gear Ratio In order to determine what a gear will do for us, we must quantify it. Best measure is the gear ratio. Gear Ratio = number of teeth in follower number of teeth in driver G.R. = Ft / Dt e.g. ⅓ or 1:3 (read as 1 to 3) Interpret above as one turn of driver will turn the follower 3 times.

Gear Analysis To analyze any gear train you need to: Locate the driver gear (see force applied) Locate the follower gear (see where useful work done) Figure out if it is geared up or geared down (big circle turning small circle – geared up) Calculate the Gear Ratio using Ft/Dt. Use the following 3 rules for gear ratio calculation.

Rule 1 – Pair up gears In the case of 2 gears, it is easy. The driver is the one driven by the motor or applied force. The follower is the one doing work. Driver Gear Ratio = 8/24 = 1/3 One turn of the 24 tooth will turn the 8 tooth 3 times. Follower

Rule 2 - Long Gear Trains For many gears on different axles, driver is one connected to applied force, follower is the last one in the gear train. All others idlers. Gear Ratio = 24/40 = 3/5 3 turns of the 40 tooth will turn the 24 tooth 5 times. Follower Idlers Driver

Rule 3 – Compound Gears Gear Ratio = 24/40 X 24/40 = 3/5 X 3/5 = 9/25 Pair up as many drivers and followers and label them D1, F1, D2, F2, etc. as needed. Note every time you follow an axle and it has a second gear attached, start a new driver. Multiply the gear ratios of all pairs of driver-follower. Gear Ratio = 24/40 X 24/40 = 3/5 X 3/5 = 9/25 D2 F2 F1 D1

Possible Gear Configuration Pairs other than 1:1 gear ratios 24t & 40t spur (or 12t & 20t dbl bevel) gives 3:5 or 5:3 24t & 8t spur gives 1:3 or 3:1 Worm & 8t spur gives 9:1 Worm & 24t spur gives 24:1 Worm & 40t spur gives 40:1 20t & 36t dbl bevel at 90° gives 5:9 or 9:5

Anecdotes to Spice Up Lessons South Pointing Chariot – differential gear Antikythera Mechanism – 32 gears in box that can predict movement of planetary objects like sun, moon, earth, zodiac, etc.

Real World Gear Types Spur gears Helical gears Bevel gears Differential gears Worm gears Planetary Gears Harmonic Drive gears