Fall 2005Costas Busch - RPI1 CSCI-2400 Models of Computation.

Slides:



Advertisements
Similar presentations
8/25/2009 Sofya Raskhodnikova Intro to Theory of Computation L ECTURE 1 Theory of Computation Course information Overview of the area Finite Automata Sofya.
Advertisements

THE CHURCH-TURING T H E S I S “ TURING MACHINES” Pages COMPUTABILITY THEORY.
1 Welcome to CS105 and Happy and fruitful New Year שנה טובה (Happy New Year)
January 5, 2015CS21 Lecture 11 CS21 Decidability and Tractability Lecture 1 January 5, 2015.
CFG => PDA Sipser 2 (pages ).
Welcome to CSE105 and Happy and fruitful New Year
CFG => PDA Sipser 2 (pages ). CS 311 Fall Formally… A pushdown automaton is a sextuple M = (Q, Σ, Γ, δ, q 0, F), where – Q is a finite set.
Costas Busch - RPI1 Pushdown Automata PDAs. Costas Busch - RPI2 Pushdown Automaton -- PDA Input String Stack States.
1 CSCI-2400 Models of Computation. 2 Computation CPU memory.
Courtesy Costas Busch - RPI1 Pushdown Automata PDAs.
FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
CS5371 Theory of Computation General Info, Scope, Textbook Assessment, …
Dr. Muhammed Al-Mulhem 1ICS ICS 535 Design and Implementation of Programming Languages Part 1 Computability (Chapter 2) ICS 535 Design and Implementation.
UMass Lowell Computer Science Foundations of Computer Science Prof. Karen Daniels Fall, 2009 Lecture 1 Introduction/Overview Th. 9/3/2009.
CS Master – Introduction to the Theory of Computation Jan Maluszynski - HT Lecture 1 Introduction Jan Maluszynski, IDA, 2007
Fall 2006Costas Busch - RPI1 Pushdown Automata PDAs.
CS211 Data Structures Sami Rollins Fall 2004.
CS311 Automata and Complexity Theory. Admistrative Stuff Instructor: Shahab Baqai Room # 428, Ext 4428 Lectures:Mon & Wed 1530 – 1710.
Fall 2006Costas Busch - RPI1 Non-Deterministic Finite Automata.
Costas Busch - RPI1 CSCI-2400 Models of Computation.
Fall 2006Costas Busch - RPI1 The Chomsky Hierarchy.
Fall 2006Costas Busch - RPI1 CSCI-2400 Models of Computation.
Finite Automata Costas Busch - RPI.
Fall 2003Costas Busch - RPI1 Turing Machines (TMs) Linear Bounded Automata (LBAs)
Prof. Busch - LSU1 Pushdown Automata PDAs. Prof. Busch - LSU2 Pushdown Automaton -- PDA Input String Stack States.
Fall 2005Costas Busch - RPI1 Pushdown Automata PDAs.
Grammars, Languages and Finite-state automata Languages are described by grammars We need an algorithm that takes as input grammar sentence And gives a.
1 CSCI 2400 section 3 Models of Computation Instructor: Costas Busch.
Introduction to the Theory of Computation
1 Theory of Computation 計算理論 2 Instructor: 顏嗣鈞 Web: Time: 9:10-12:10 PM, Monday Place: BL 103.
CS355 – Theory of Computation Dr. Aidan Mooney, September 2006 National University of Ireland, Maynooth Department of Computer Science.
Introduction to the Theory of Computation
CS 390 Introduction to Theoretical Computer Science.
CSC312 Automata Theory Lecture # 1 Introduction.
1 An Introduction to Formal Languages and Automata Provided by : Babak Salimi webAdd:
CSCI 2670 Introduction to Theory of Computing September 28, 2005.
© M. Winter COSC/MATH 4P61 - Theory of Computation COSC/MATH 4P61 Theory of Computation Michael Winter –office: J323 –office hours: Mon & Fri, 10:00am-noon.
Complexity theory and combinatorial optimization Class #2 – 17 th of March …. where we deal with decision problems, finite automata, Turing machines pink.
Fall 2006Costas Busch - RPI1 Deterministic Finite Automaton (DFA) Input Tape “Accept” or “Reject” String Finite Automaton Output.
THE CHURCH-TURING T H E S I S “ TURING MACHINES” Part 1 – Pages COMPUTABILITY THEORY.
CSC312 Automata Theory Lecture # 1 Introduction.
CSC312 Automata Theory Lecture # 1 Introduction.
1 Theory of Computation 計算理論 2 Instructor: 顏嗣鈞 Web: Time: 9:10-12:10 PM, Monday Place: BL.
Complexity and Computability Theory I Lecture #11 Instructor: Rina Zviel-Girshin Lea Epstein.
Models of Computation. Computation: Computation is a general term for any type of information processing information processing CPU memory.
1Computer Sciences Department. Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER Reference 3Computer Sciences Department.
1 Welcome to CptS 317 Background Course Outline Textbook Syllabus (see class web site to important information on disabilities, cheating and safety) Grades.
CSCI 3130: Automata theory and formal languages Andrej Bogdanov The Chinese University of Hong Kong Pushdown.
Copyright © Curt Hill Other Automata Pushdown through Turing machines.
Costas Busch - RPI1 Decidability. Costas Busch - RPI2 Consider problems with answer YES or NO Examples: Does Machine have three states ? Is string a binary.
Theory of Computational Complexity TA : Junichi Teruyama Iwama lab. D3
Computation Theory Asia Mahdi. Textbooks Programs, Machines and Computation: An Introduction to the Theory of Computing - Authors: Keith Clark and Don.
Theory of Computation. Introduction to The Course Lectures: Room ( Sun. & Tue.: 8 am – 9:30 am) Instructor: Dr. Ayman Srour (Ph.D. in Computer Science).
CSCI 2670 Introduction to Theory of Computing September 22, 2004.
Theory of Computation. Introduction We study this course in order to answer the following questions: What are the fundamental capabilities and limitations.
Formal Foundations-II [Theory of Automata]
Recursively Enumerable and Recursive Languages
CS-300 Theory of Computation 2nd Sem 2017 Lecture 1.
Introduction to the Theory of Computation
Models of Computation.
Time Complexity Costas Busch - LSU.
Pushdown Automata PDAs
Pushdown Automata PDAs
Undecidable Problems (unsolvable problems)
CSCI-2400 Models of Computation Costas Busch - RPI.
A Universal Turing Machine
CSCI-2400 Models of Computation.
Principles of Computing – UFCFA3-30-1
Formal Definitions for Turing Machines
The Chomsky Hierarchy Costas Busch - LSU.
Presentation transcript:

Fall 2005Costas Busch - RPI1 CSCI-2400 Models of Computation

Fall 2005Costas Busch - RPI2 Syllabus: tentative class schedule can be found in course web page Grading: Weekly Homeworks: 34% 3 Exams: 66% (each 22%) Instructor: Costas Busch General Info for the Course

Fall 2005Costas Busch - RPI3 Book: Introduction to the Theory of Computation Michael Sipser, 2 nd edition Chapters that will be covered: 1-5,7

Fall 2005Costas Busch - RPI4 Computation CPU memory Outline of the course contents

Fall 2005Costas Busch - RPI5 CPU input output Program memory temporary memory

Fall 2005Costas Busch - RPI6 CPU input output Program memory temporary memory compute Example:

Fall 2005Costas Busch - RPI7 CPU input output Program memory temporary memory compute

Fall 2005Costas Busch - RPI8 CPU input output Program memory temporary memory compute

Fall 2005Costas Busch - RPI9 CPU input output Program memory temporary memory compute

Fall 2005Costas Busch - RPI10 Automaton CPU input output Program memory temporary memory Automaton

Fall 2005Costas Busch - RPI11 Automaton input output temporary memory Automaton state transition

Fall 2005Costas Busch - RPI12 Different Kinds of Automata Automata are distinguished by the temporary memory Finite Automata: no temporary memory Pushdown Automata: stack Turing Machines: random access memory

Fall 2005Costas Busch - RPI13 input output temporary memory Finite Automaton Example: Vending Machines (small computing power)

Fall 2005Costas Busch - RPI14 input output Stack Pushdown Automaton Pushdown Automaton Example: Compilers for Programming Languages (medium computing power) Push, Pop Temp. memory

Fall 2005Costas Busch - RPI15 input output Random Access Memory Turing Machine Turing Machine Examples: Any Algorithm (highest computing power) Temp. memory

Fall 2005Costas Busch - RPI16 Finite Automata Pushdown Automata Turing Machine Power of Automata Less powerMore power Solve more computational problems Simple problems More complex problems Hardest problems

Fall 2005Costas Busch - RPI17 Turing Machine is the most powerful computational model known Question: Are there computational problems that a Turing Machine cannot solve? Answer: Yes(unsolvable problems)

Fall 2005Costas Busch - RPI18 Time Complexity of Computational Problems: NP-complete problems P problems Believed to take exponential time to be solved Solved in polynomial time