Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Walter Pirovano, Jaap Heringa

Slides:



Advertisements
Similar presentations
HCS806 “Methods in Horticulture and Crop Science” Introduction to methods in Bioinformatics for plant science. David Francis (Coordinator) Ian Holford.
Advertisements

BIOINFORMATICS Ency Lee.
Bioinformatics What is bioinformatics? Why bioinformatics? The major molecular biology facts Brief history of bioinformatics Typical problems of bioinformatics:
Master Course Sequence Analysis Anton Feenstra, Bart van Houte, Walter Pirovano, Jaap Heringa Tel , Rm.
Bioinformatics For MNW 2 nd Year Jaap Heringa FEW/FALW Integrative Bioinformatics Institute VU (IBIVU) Tel ,
Bioinformatics Master’s Course Genome Analysis ( Integrative Bioinformatics ) Lecture 1: Introduction Centre for Integrative Bioinformatics VU (IBIVU)
Structural bioinformatics
. Class 1: Introduction. The Tree of Life Source: Alberts et al.
Introduction to Bioinformatics Spring 2008 Yana Kortsarts, Computer Science Department Bob Morris, Biology Department.
Computational Molecular Biology (Spring’03) Chitta Baral Professor of Computer Science & Engg.
Bioinformatics: a Multidisciplinary Challenge Ron Y. Pinter Dept. of Computer Science Technion March 12, 2003.
Data-intensive Computing: Case Study Area 1: Bioinformatics B. Ramamurthy 6/17/20151.
Lecture 1 BNFO 240 Usman Roshan. Course overview Perl progamming language (and some Unix basics) Sequence alignment problem –Algorithm for exact pairwise.
Introduction to Genomics, Bioinformatics & Proteomics Brian Rybarczyk, PhD PMABS Department of Biology University of North Carolina Chapel Hill.
Reconfigurable Computing S. Reda, Brown University Reconfigurable Computing (EN2911X, Fall07) Lecture 18: Application-Driven Hardware Acceleration (4/4)
The Cell, Central Dogma and Human Genome Project.
Bioinformatics Lecture 2. Bioinformatics: is the computational branch of molecular biology Using the computer software to analyze biological data The.
Master Course Sequence Analysis Anton Feenstra, Bart van Houte, Radek Szklarczyk, Walter Pirovano, Jaap Heringa Tel.
BI420 – Course information Web site: Instructor: Gabor Marth Teaching.
Signaling Pathways and Summary June 30, 2005 Signaling lecture Course summary Tomorrow Next Week Friday, 7/8/05 Morning presentation of writing assignments.
© Wiley Publishing All Rights Reserved. Biological Sequences.
Introduction to Biological Sequences. Background: What is DNA? Deoxyribonucleic acid Blueprint that carries genetic information from one generation to.
Meer perspectief Master’s programme in Bioinformatics Bio-tools for the Future International 2-year Bioinformatics Master’s Programme.
Introducing genes Genetics is the study of inherited traits and their variations. Genetics is not genealogy! Genealogy is the study of family relationships.
Bioinformatics.
1 Bio + Informatics AAACTGCTGACCGGTAACTGAGGCCTGCCTGCAATTGCTTAACTTGGC An Overview پرتال پرتال بيوانفورماتيك ايرانيان.
CSE 6406: Bioinformatics Algorithms. Course Outline
Chapter 14 Genomes and Genomics. Sequencing DNA dideoxy (Sanger) method ddGTP ddATP ddTTP ddCTP 5’TAATGTACG TAATGTAC TAATGTA TAATGT TAATG TAAT TAA TA.
Manifestations of a Code Genes, genomes, bioinformatics and cyberspace – and the promise they hold for biology education.
Genomics and Personalized Care in Health Systems Lecture 9 RNA and Protein Structure Leming Zhou, PhD School of Health and Rehabilitation Sciences Department.
Introduction to Bioinformatics Spring 2002 Adapted from Irit Orr Course at WIS.
BIOINFORMATICS IN BIOCHEMISTRY Bioinformatics– a field at the interface of molecular biology, computer science, and mathematics Bioinformatics focuses.
Molecular Biology Primer. Starting 19 th century… Cellular biology: Cell as a fundamental building block 1850s+: ``DNA’’ was discovered by Friedrich Miescher.
C E N T R F O I G A V B M S U 2MNW/3I/3AI/3PHAR bachelor course Introduction to Bioinformatics Lecture 1: Introduction Centre for Integrative Bioinformatics.
Introduction to Bioinformatics Yana Kortsarts References: An Introduction to Bioinformatics Algorithms bioalgorithms.info.
DNA alphabet DNA is the principal constituent of the genome. It may be regarded as a complex set of instructions for creating an organism. Four different.
Sevas Educational Society All Rights Reserved, 2008 Module 1 Introduction to Bioinformatics.
CSCI 6900/4900 Special Topics in Computer Science Automata and Formal Grammars for Bioinformatics Bioinformatics problems sequence comparison pattern/structure.
Bioinformatics For MNW 2 nd Year Jaap Heringa FEW/FALW Centre for Integrative Bioinformatics VU (IBIVU) Tel ,
Biological Databases Biology outside the lab. Why do we need Bioinfomatics? Over the past few decades, major advances in the field of molecular biology,
DIALing the IBIVU Vrije Universiteit Amsterdam Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) Faculty of Sciences / Faculty of Earth and.
Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Victor Simossis, Jens Kleinjung, Jaap Heringa
Overview of Bioinformatics 1 Module Denis Manley..
Introduction to Bioinformatics Dr. Rybarczyk, PhD University of North Carolina-Chapel Hill
November 18, 2000ICTCM 2000 Introductory Biological Sequence Analysis Through Spreadsheets Stephen J. Merrill Sandra E. Merrill Marquette University Milwaukee,
Central dogma: the story of life RNA DNA Protein.
EB3233 Bioinformatics Introduction to Bioinformatics.
Bioinformatics and Computational Biology
The iPlant Collaborative Vision Enable life science researchers and educators to use and extend cyberinfrastructure.
1 From Mendel to Genomics Historically –Identify or create mutations, follow inheritance –Determine linkage, create maps Now: Genomics –Not just a gene,
The iPlant Collaborative Vision Enable life science researchers and educators to use and extend cyberinfrastructure.
Applied Bioinformatics Dr. Jens Allmer Week 1 (Introduction)
BINF6201/8201: Molecular Sequence Analysis Dr. Zhengchang Su Office: 351 Bioinformatics Building Office hours: Tuesday and Thursday:
Copyright OpenHelix. No use or reproduction without express written consent1.
Introduction to molecular biology Data Mining Techniques.
DNA Sequences Analysis Hasan Alshahrani CS6800 Statistical Background : HMMs. What is DNA Sequence. How to get DNA Sequence. DNA Sequence formats. Analysis.
Bioinformatics Overview
Data-intensive Computing: Case Study Area 1: Bioinformatics
Things that may help with comprehension of bioinformatics issues in general and Rosalind problems in particular.
생물정보학 Bioinformatics.
Genomes and Their Evolution
C E N T R F O I G A V B M S U 2MNW/3I/3AI/3PHAR bachelor course Introduction to Bioinformatics Lecture 1: Introduction Centre for Integrative Bioinformatics.
Genome organization and Bioinformatics
Introduction to Bioinformatics II
Bioinformatics Vicki & Joe.
Bioinformatics For MNW 2nd Year
From Mendel to Genomics
Introduction to Bioinformatics
Introduction to Bioinformatics
Reconfigurable Computing (EN2911X, Fall07)
Presentation transcript:

Course Sequence Analysis for Bioinformatics Master’s Bart van Houte, Radek Szklarczyk, Walter Pirovano, Jaap Heringa Tel , Rm R4.41

Sequence Analysis course schedule Lectures [wk 44] 31/10/04 IntroductionLecture 1 [wk 44] 03/11/04 Sequence Alignment 1Lecture 2 [wk 45] 07/11/04 Sequence Alignment 2Lecture 3 [wk 45] 10/11/04 Sequence Alignment 3Lecture 4 [wk 46] 14/11/04 Multiple Sequence Alignment 1Lecture 5 [wk 46] 17/11/04 Multiple Sequence Alignment 2Lecture 6 [wk 47] 21/11/04 Multiple Sequence Alignment 3Lecture 7 [wk 47] 24/11/04 Sequence Databank Searching 1Lecture 8 [wk 48] 28/11/04 Sequence Databank Searching 2Lecture 9 [wk 48] 01/12/04 Pattern Matching 1Lecture 10 [wk 49] 05/12/04 Pattern Matching 2Lecture 11 [wk 49] 08/12/04 Genome AnalysisLecture 12 [wk 50] 12/12/04 PhylogeneticsLecture 13 [wk 50] 15/12/05 Wrapping upLecture 14

Sequence Analysis course schedule Practical assignments There will be four practical assignments you will have to carry out. Each assignment will be introduced and placed on the IBIVU website: 1.Pairwise alignment (DNA and protein) 2.Multiple sequence alignment (insulin family) 3.Pattern recognition 4.Database searching 5.Programming your own sequence analysis method (assignment ‘Dynamic programming’ supervised by Bart). If you have no programming experience whatsoever, you can opt out for this assignment.

Sequence Analysis course final mark TaskFraction 1.Oral exam 1/2 2.Assignment Pairwise alignment1/101/8 3.Assignment Multiple sequence alignment 1/101/8 4.Assignment Pattern recognition1/101/8 5.Assignment Database searching1/101/8 6.Optional assignment 1/10 Dynamic programming

Bioinformatics staff for this course Walter Pirovano – PhD (1/09/05) Radek Szklarczyk - PhD (1/03/03) Bart van Houte – PhD (1/09/04) Jaap Heringa – Grpldr (1/10/02)

Gathering knowledge Anatomy, architecture Dynamics, mechanics Informatics (Cybernetics – Wiener, 1948) (Cybernetics has been defined as the science of control in machines and animals, and hence it applies to technological, animal and environmental systems) Genomics, bioinformatics Rembrandt, 1632 Newton, 1726

Mathematics Statistics Computer Science Informatics Biology Molecular biology Medicine Chemistry Physics Bioinformatics

“Studying informational processes in biological systems” (Hogeweg, early 1970s) No computers necessary Back of envelope OK Applying algorithms with mathematical formalisms in biology (genomics) -- USA “Information technology applied to the management and analysis of biological data” (Attwood and Parry-Smith)

Bioinformatics in the olden days Close to Molecular Biology: –(Statistical) analysis of protein and nucleotide structure –Protein folding problem –Protein-protein and protein-nucleotide interaction Many essential methods were created early on (BG era) –Protein sequence analysis (pairwise and multiple alignment) –Protein structure prediction (secondary, tertiary structure)

Bioinformatics in the olden days (Cont.) Evolution was studied and methods created –Phylogenetic reconstruction (clustering – NJ method

But then the big bang….

The Human Genome June 2000 Dr. Craig Venter Celera Genomics -- Shotgun method Dr. Francis Collins / Sir John Sulston Human Genome Project

Human DNA There are about 3bn (3  10 9 ) nucleotides in the nucleus of almost all of the trillions (3.5  ) of cells of a human body (an exception is, for example, red blood cells which have no nucleus and therefore no DNA) – a total of ~10 22 nucleotides! Many DNA regions code for proteins, and are called genes (1 gene codes for 1 protein in principle) Human DNA contains ~30,000 expressed genes Deoxyribonucleic acid (DNA) comprises 4 different types of nucleotides: adenine (A), thiamine (T), cytosine (C) and guanine (G). These nucleotides are sometimes also called bases

Human DNA (Cont.) All people are different, but the DNA of different people only varies for 0.2% or less. So, only 2 letters in ~1400 are expected to be different. Over the whole genome, this means that about 3 million letters would differ between individuals. The structure of DNA is the so-called double helix, discovered by Watson and Crick in 1953, where the two helices are cross-linked by A-T and C-G base-pairs (nucleotide pairs – so-called Watson-Crick base pairing). The Human Genome has recently been announced as complete (in 2004).

Genome size OrganismNumber of base pairs  X-174 virus5,386 Epstein Bar Virus172,282 Mycoplasma genitalium580,000 Hemophilus Influenza1.8  10 6 Yeast (S. Cerevisiae)12.1  10 6 Human 3.2  10 9 Wheat16  10 9 Lilium longiflorum 90  10 9 Salamander100  10 9 Amoeba dubia670  10 9

Humans have spliced genes…

Protein mRNA DNA transcription translation CCTGAGCCAACTATTGATGAA PEPTIDEPEPTIDE CCUGAGCCAACUAUUGAUGAA A gene codes for a protein

Genome information has changed bioinformatics More high-throughput (HTP) applications (cluster computing, GRID, etc.) More automatic pipeline applications More user-friendly interfaces Greater emphasis on biostatistics Greater influence of computer science (machine learning, software engineering, etc.) More integration of disciplines, databases and techniques

Protein Sequence-Structure-Function Sequence Structure Function Threading Homology searching (BLAST) Ab initio prediction and folding Function prediction from structure

Luckily for bioinformatics… There are many annotated databases (i.e. DBs with experimentally verified information) Based on evolution, we can relate biological macromolecules and then “steal” annotation of “neighbouring” proteins or DNA in the DB. This works for sequence as well as structural information Problem we discuss in this course: how do we score the evolutionary relationships; i.e. we need to develop a measure to decide which molecules are (probably) neighbours and which are not Sequence – Structure/function gap: there are far more sequences than solved tertiary structures and functional annotations. This gap is growing so there is a need to predict structure and function.

Some sequence databases UniProt (formerly called SwissProt) ( PIR ( NCBI NR-dataset () -- all non-redundant GenBank CDS translations+RefSeq Proteins+PDB+SwissProt+PIR+PRF EMBL databank ( trEMBL databank ( GenBank (

Boston Globe: “Using a strategy called 454 sequencing, Rothberg's group reported online July 31 in Nature that they had decoded the genome -- mapped a complete DNA sequence -- for a bacterium in four hours, a rate that is 100 times faster than other devices currently on the market. A second group of researchers based at Harvard Medical School, published a report in last week's Science describing how ordinary laboratory equipment can be converted into a machine that will make DNA sequencing nine times less expensive. Mapping the first human genome took 13 years and cost $2.7 billion. Current estimates put the cost of a single genome at $10 million to $25 million.” Sequence -- Structure/function gap

A bit on divergent evolution Ancestral sequence Sequence 1Sequence 2 1: ACCTGTAATC 2: ACGTGCGATC * ** D = 3/10 (fraction different sites (nucleotides)) G GC (a)G AC (b) G AA (c) One substitution - one visible Two substitutions - one visible Two substitutions - none visible G G A (d) Back mutation - not visible G

A word of caution on divergent evolution Homology is a term used in molecular evolution that refers to common ancestry. Two homologous sequences are defined to have a common ancestor. This is a Boolean term: two sequences are homologous or not (i.e. 0 or 1). Relative scales (“Sequence A and B are more homologous than A and C”) are nonsensical. You can talk about sequence similarity, or the probability of homology. These are scalars.

Modern bioinformatics is closely associated with genomics The aim is to solve the genomics information problem Ultimately, this should lead to biological understanding how all the parts fit (DNA, RNA, proteins, metabolites) and how they interact (gene regulation, gene expression, protein interaction, metabolic pathways, protein signalling, etc.)

TERTIARY STRUCTURE (fold) Genome Expressome Proteome Metabolome Functional Genomics From gene to function

A word on the Bioinformatics Master Concerning study points (ECTS), mandatory courses are on half time basis You need to combine those with either an optional course, or with an internship (project) Talk to your mentor about how to structure your master