Intelligent Agents Chapter 2 ICS 171, Fall 2005.

Slides:



Advertisements
Similar presentations
Additional Topics ARTIFICIAL INTELLIGENCE
Advertisements

Artificial Intelligent
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Introduction to AI & Intelligent Agents This Lecture Read Chapters 1 and 2 Next Lecture Read Chapter 3.1 to 3.4 (Please read lecture topic material before.
Agentes Inteligentes Capítulo 2. Contenido Agentes y medios ambientes Racionalidad PEAS (Performance measure, Environment, Actuators, Sensors) Tipos de.
ICS-171: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2009.
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2. Outline Agents and environments Agents and environments Rationality Rationality PEAS (Performance measure, Environment,
COMP 4640 Intelligent and Interactive Systems Intelligent Agents Chapter 2.
AI CSC361: Intelligent Agents1 Intelligent Agents -1 CSC361.
ICS-271: 1 Intelligent Agents Chapter 2 ICS 279 Fall 09.
© Copyright 2008 STI INNSBRUCK Intelligent Systems Intelligent Agents – Lecture 9 Prof. Dieter Fensel (& Francois.
ICS-171: Notes 2: 1 Intelligent Agents Chapter 2 ICS 171, Fall 2005.
Intelligent Agents Chapter 2.
ICS-171: Notes 2: 1 Intelligent Agents Chapter 2 ICS 171, spring 2007.
Rational Agents (Chapter 2)
Introduction to Logic Programming WS2004/A.Polleres 1 Introduction to Artificial Intelligence MSc WS 2009 Intelligent Agents: Chapter 2.
Rational Agents (Chapter 2)
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
CPSC 7373: Artificial Intelligence Jiang Bian, Fall 2012 University of Arkansas at Little Rock.
Introduction to AI & Intelligent Agents This Lecture Chapters 1 and 2 Next Lecture Chapter 3.1 to 3.4 (Please read lecture topic material before and after.
INTELLIGENT AGENTS Chapter 2 02/12/ Outline  Agents and environments  Rationality  PEAS (Performance measure, Environment, Actuators, Sensors)
Artificial Intelligence
Intelligent Agents Chapter 2 Intelligent Agents. Slide Set 2: State-Space Search 2 Agents An agent is anything that can be viewed as perceiving its environment.
CHAPTER 2 Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
© Copyright 2008 STI INNSBRUCK Introduction to A rtificial I ntelligence MSc WS 2009 Intelligent Agents: Chapter.
Intelligent Agents Chapter 2 Some slide credits to Hwee Tou Ng (Singapore)
Lection 3. Part 1 Chapter 2 of Russel S., Norvig P. Artificial Intelligence: Modern Approach.
Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Artificial Intelligence.
Intelligent Agents Chapter 2. CIS Intro to AI - Fall Outline  Brief Review  Agents and environments  Rationality  PEAS (Performance measure,
1/34 Intelligent Agents Chapter 2 Modified by Vali Derhami.
Chapter 2 Agents & Environments. © D. Weld, D. Fox 2 Outline Agents and environments Rationality PEAS specification Environment types Agent types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
Chapter 2 Hande AKA. Outline Agents and Environments Rationality The Nature of Environments Agent Types.
CE An introduction to Artificial Intelligence CE Lecture 2: Intelligent Agents Ramin Halavati In which we discuss.
CS 8520: Artificial Intelligence Intelligent Agents Paula Matuszek Fall, 2008 Slides based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are.
CHAPTER 2 Intelligent Agents. Outline Artificial Intelligence a modern approach 2 Agents and environments Rationality PEAS (Performance measure, Environment,
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
INTELLIGENT AGENTS. Agents  An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through.
Dr. Alaa Sagheer Chapter 2 Artificial Intelligence Ch2: Intelligent Agents Dr. Alaa Sagheer.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
1/23 Intelligent Agents Chapter 2 Modified by Vali Derhami.
CS-271: 1 Introduction to AI & Intelligent Agents Russell&Norvig, Chapters 1-2 CS-271, Fall 2010.
Chapter 2 Agents & Environments
CSC 9010 Spring Paula Matuszek Intelligent Agents Overview Slides based in part on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are in turn.
Intelligent Agents Chapter 2 Dewi Liliana. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 2 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Intelligent Agents. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types.
Web-Mining Agents Cooperating Agents for Information Retrieval Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Karsten Martiny.
Introduction to AI & Intelligent Agents
CSC AI Intelligent Agents.
Artificial Intelligence
EA C461 – Artificial Intelligence Intelligent Agents
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Hong Cheng SEG4560 Computational Intelligence for Decision Making Chapter 2: Intelligent Agents Hong Cheng
Introduction to Artificial Intelligence
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Artificial Intelligence
Intelligent Agents Chapter 2.
EA C461 – Artificial Intelligence Intelligent Agents
Artificial Intelligence
Intelligent Agents Chapter 2.
Intelligent Agents Chapter 2.
Presentation transcript:

Intelligent Agents Chapter 2 ICS 171, Fall 2005

Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators Human agent: eyes, ears, and other organs for sensors; hands, legs, mouth, and other body parts for actuators Robotic agent: cameras and infrared range finders for sensors; various motors for actuators

Agents and environments The agent function maps from percept histories to actions: [f: P*  A] The agent program runs on the physical architecture to produce f agent = architecture + program

Vacuum-cleaner world Percepts: location and state of the environment, e.g., [A,Dirty], [B,Clean] Actions: Left, Right, Suck, NoOp

Rational agents Rational Agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, based on the evidence provided by the percept sequence and whatever built-in knowledge the agent has. Performance measure: An objective criterion for success of an agent's behavior E.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up, amount of time taken, amount of electricity consumed, amount of noise generated, etc.

Rational agents Rationality is distinct from omniscience (all-knowing with infinite knowledge) Agents can perform actions in order to modify future percepts so as to obtain useful information (information gathering, exploration) An agent is autonomous if its behavior is determined by its own percepts & experience (with ability to learn and adapt) without depending solely on build-in knowledge

Task Environment Before we design an intelligent agent, we must specify its “task environment”: PEAS: Performance measure Environment Actuators Sensors

PEAS Example: Agent = taxi driver Performance measure: Safe, fast, legal, comfortable trip, maximize profits Environment: Roads, other traffic, pedestrians, customers Actuators: Steering wheel, accelerator, brake, signal, horn Sensors: Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

PEAS Example: Agent = Medical diagnosis system Performance measure: Healthy patient, minimize costs, lawsuits Environment: Patient, hospital, staff Actuators: Screen display (questions, tests, diagnoses, treatments, referrals) Sensors: Keyboard (entry of symptoms, findings, patient's answers)

PEAS Example: Agent = Part-picking robot Performance measure: Percentage of parts in correct bins Environment: Conveyor belt with parts, bins Actuators: Jointed arm and hand Sensors: Camera, joint angle sensors

Environment types Fully observable (vs. partially observable): An agent's sensors give it access to the complete state of the environment at each point in time. Deterministic (vs. stochastic): The next state of the environment is completely determined by the current state and the action executed by the agent. (If the environment is deterministic except for the actions of other agents, then the environment is strategic) Episodic (vs. sequential): An agent’s action is divided into atomic episodes. Decisions do not depend on previous decisions/actions.

Environment types Static (vs. dynamic): The environment is unchanged while an agent is deliberating. (The environment is semidynamic if the environment itself does not change with the passage of time but the agent's performance score does) Discrete (vs. continuous): A limited number of distinct, clearly defined percepts and actions. How do we represent or abstract or model the world? Single agent (vs. multi-agent): An agent operating by itself in an environment.

task environm. observable determ./ stochastic episodic/ sequential static/ dynamic discrete/ continuous agents crossword puzzle fully determ. static discrete single chess with clock strategic semi multi poker partial back gammon taxi driving medical diagnosis image analysis episodic partpicking robot refinery controller interact. Eng. tutor

Agent types Five basic types in order of increasing generality: Table Driven agent Simple reflex agents Model-based reflex agents Goal-based agents Utility-based agents

Impractical Table Driven Agent. table lookup for entire history current state of decision process Impractical table lookup for entire history

Fast but too simple Simple reflex agents NO MEMORY Fails if environment is partially observable example: vacuum cleaner world

Model-based reflex agents description of current world state Models the world by: modeling how the world chances how it’s actions change the world sometimes it is unclear what to do without a clear goal

Goal-based agents Goals provide reason to prefer one action over the other. We need to predict the future: we need to plan & search

Utility-based agents Some solutions to goal states are better than others. Which one is best is given by a utility function. Which combination of goals is preferred?

Learning agents How does an agent improve over time? By monitoring it’s performance and suggesting better modeling, new action rules, etc. Evaluates current world state changes action rules “old agent” model world and decide on actions to be taken suggests explorations