Introduction1-1 Communication Systems Lecturer Dr. Marina Kopeetsky Lecture 1: Introduction Computer Networking: A Top Down Approach Featuring the Internet,

Slides:



Advertisements
Similar presentations
Introduction 2 1: Introduction.
Advertisements

TA: Xifan Zheng Welcome to CPSC 441!
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
Aleksandar, Accounts have been created for any students in EECS 340 who did not already have one. Physical access to the labs has also been granted. If.
Introduction1-1 Introduction to Computer Networks Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet.
Lecture Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Introduction1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach: m use Internet as example.
1 Day 01 - The Internet. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
1: Introduction1 Part I: Introduction Chapter goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Lecture 1 Overview: roadmap 1.1 What is computer network? the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network.
Introduction1-1 Introduction To Computer Networks מבוא לרשתות תקשורת פרופ ' אמיר הרצברג Computer Networking: A Top Down Approach Featuring the Internet,
Introduction1-1 CS 325 Computer Networks Sami Rollins Fall 2005.
What’s the Internet: “nuts and bolts” view
1-1 CS 456 – Computer Networks □ Instructor: Ian Goldberg □ Classes: Tuesday and Thursday 8:30 – 9:50am MC 4063 (section.
1: Introduction1 Part I: Introduction Goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Chapter 1 Introduction Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Introduction 1-1 Lecture 3 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides.
Computer Networking Introduction, Part I. Lecture #1: Part I: Introduction Chapter goal: get context, overview, “feel” of networking.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
CS 381 Introduction to computer networks Chapter 1 - Lecture 4 2/10/2015.
Introduction 1-1 Chapter 1 Part 2 Network Core These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
1: Introduction1 Internet History r 1961: Kleinrock - queueing theory shows effectiveness of packet- switching r 1964: Baran - packet- switching in military.
Course info1 1 st Semester 2007 MI305 Computer Networks  Instructor: Jen-Liang Cheng   Office: H501-1( 福田樓 )  Lectures:
Introduction1-1 Course Code:EE/TE533 Instructor: Muddathir Qamar.
1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware, software Question:
CS 3214 Computer Systems Godmar Back Lecture 23. Announcements Project 5 due Dec 8 Exercise 10 handed out Exercise 11 coming before Thanksgiving CS 3214.
Introduction Switches and Access. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 5 rd edition. Jim.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
CPSC 411 Tutorial TA: Fang Wang. Fang Wang 9:00am-5:00pm, Mon-Fri.
Ch 1. Computer Networks and the Internet Myungchul Kim
TCP/IP Network.
1 End-user Protocols, Services and QoS. 2 Layering: logical communication application transport network link physical application transport network link.
CS 3830 Day 6 Introduction 1-1. Announcements  Program 2 posted this afternoon (due date will be week of 9/24) Introduction 1-2.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 1 Omar Meqdadi Department of Computer Science and Software Engineering.
Introduction 1-1 Networking Admin  1 to 4 lectures a week for 11 weeks for a total of 23 lectures  Interleaves with Functional Programming  First prac.
1 Network Core and Network Edge By Muhammad Hanif To BS IT 4 th Semester.
Internet History CS 4244: Internet Programming Dr. Eli Tilevich.
1: Introduction1 Introduction 3. 1: Introduction2 Delay in packet-switched networks packets experience delay on end-to-end path r four sources of delay.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Computer Networking II Course Outline - introduction -Network Layer -Wireless and Mobile Networks -Multimedia Networking -Network Management -Network Security.
Introduction1-1 Computer Network (  Instructor  Ai-Chun Pang 逄愛君, m Office Number: 417  Textbook.
Chapter 1, slide: 1 Summer 2010 CS 372 Introduction to Computer Networks* Monday, June 21, 2010 School of Electrical Engineering and Computer Science Oregon.
Lecture 1: Facts of network technologies developments
1: Introduction1 Internet Services and Protocols Adapted from “Computer Networking: A Top Down Approach Featuring the Internet” Kurose and Ross, Addison.
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
1 Ram Dantu University of North Texas, Practical Networking.
CS 5565 Network Architecture and Protocols
Graciela Perera Introduction Graciela Perera
CS 3214 Computer Systems Networking.
Day 01 - The Internet.
Part 0: Networking Review
Slides taken from: Computer Networking by Kurose and Ross
Chapter 1: Introduction
CS 3214 Computer Systems Lecture 21 Godmar Back.
An Aleksandar,   Accounts have been created for any students in EECS 340 who did not already have one.  Physical access to the labs has.
CS 3214 Computer Systems Networking.
Introduction 1 1: Introduction.
CS 5565 Network Architecture and Protocols
Chapter 1: Introduction
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
Protocol “Layers” Question: Networks are complex! many “pieces”: hosts
Presentation transcript:

Introduction1-1 Communication Systems Lecturer Dr. Marina Kopeetsky Lecture 1: Introduction Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July Based on foils by Kurose & Ross ©, see:

Introduction1-2 Books  Main book: Computer Networking: A Top Down Approach Featuring the Internet, 2nd edition. Jim Kurose, Keith Ross Addison-Wesley, July  A. Tanenbaum: Computer Networks,4 th edition

Introduction1-3 Chapter 1: Introduction (this and next lecture) Our goal:  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive m use Internet as example Overview:  what’s the Internet  what’s a protocol?  network edge  network core  access net, physical media  Internet/ISP structure  performance: loss, delay  protocol layers, service models  history

Introduction1-4 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and ISPs 1.6 Delay & loss in packet-switched networks 1.7 Protocol layers, service models 1.8 History

Introduction1-5 What’s the Internet: “nuts and bolts” view  millions of connected computing devices: hosts, end-systems m PCs workstations, servers m PDAs phones, toasters running network apps  communication links m fiber, copper, radio, satellite m transmission rate = bandwidth  routers: forward packets (chunks of data) local ISP company network regional ISP router workstation server mobile

Introduction1-6 What’s the Internet: “nuts and bolts” view  Internet: specific standard technologies: m TCP, IP – and others… m Allowing interoperability m RFC: Request for comments m IETF: Internet Engineering Task Force  An internet: “network of networks” m loosely hierarchical m public Internet versus private intranet local ISP company network regional ISP router workstation server mobile

Introduction1-7 Computer Communication Network  Connection btw computers  Each pair can communicate (using `physical` network addresses)  Different implementations  Most ensure reliable communication

Introduction1-8 Network Types

Introduction1-9 An internet: Connection of Networks (Using TCP/IP; `Internet` is the `big, public` internet.)

Introduction1-10 What’s the Internet: a service view  communication infrastructure enables distributed applications: m Web, , games, e- commerce, database., voting, file (MP3) sharing  communication services provided to apps: m connectionless m connection-oriented  Use protocols to control send, receive messages m e.g., TCP, IP, HTTP, FTP, POP3, SMTP

Introduction1-11 What’s a protocol? human protocols:  “what’s the time?”  “I have a question”  introductions … specific msgs sent … specific actions taken when msgs received, or other events network protocols:  machines rather than humans  all communication activity in Internet governed by protocols protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Introduction1-12 What’s a protocol? a human protocol and a computer network protocol: Q: Other human protocols? Hi Got the time? 2:00 TCP connection req TCP connection response Get time Q: What is this protocol?

Introduction1-13 A closer look at network structure:  network edge: applications and hosts  network core: m routers m network of networks  access networks, physical media: communication links

Introduction1-14 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and ISPs 1.6 Delay & loss in packet-switched networks 1.7 Protocol layers, service models 1.8 History

Introduction1-15 The network edge:  end systems (hosts): m run application programs m e.g. Web, m at “edge of network” m Idea: Do most work at edge  client/server model m client host requests, receives service from always-on server m e.g. Web browser/server; client/server  peer-peer model: m minimal (or no) use of dedicated servers

Introduction1-16 Network edge: connection-oriented service Goal: reliable data transfer between end systems  handshaking: setup (prepare for) data transfer ahead of time m Hello, hello back human protocol m set up “state” in two communicating hosts  TCP - Transmission Control Protocol m Internet’s connection- oriented service TCP service [RFC 793]  reliable, in-order byte- stream data transfer m loss: acknowledgements and retransmissions  flow control: m sender won’t overwhelm receiver  congestion control: m senders “slow down sending rate” when network congested

Introduction1-17 Network edge: connectionless service Goal: data transfer between end systems m same as before!  UDP - User Datagram Protocol [RFC 768]: Internet’s connectionless service m unreliable data transfer m no flow control m no congestion control App’s using TCP:  HTTP (Web), FTP (file transfer), Telnet (remote login), SMTP ( ) App’s using UDP:  streaming media, teleconferencing, DNS, Internet telephony

Introduction1-18 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and ISPs 1.6 Delay & loss in packet-switched networks 1.7 Protocol layers, service models 1.8 History

Introduction1-19 The Network Core  mesh of interconnected routers  Hi speed, minimize work  Routing: how is data transferred through net? m circuit switching: dedicated circuit per call: telephone net m packet-switching: data sent thru net in discrete “chunks”

Introduction1-20 Network Core: Circuit Switching End-end resources reserved for “call”  link bandwidth, switch capacity  dedicated resources: no sharing  circuit-like (guaranteed) performance  call setup required

Introduction1-21 Network Core: Circuit Switching network resources (e.g., bandwidth) divided into “pieces”  pieces allocated to calls  resource piece idle if not used by owning call (no sharing)  dividing link bandwidth into “pieces”  Division for Multiple Access: m Frequency division (FDMA) m Time division (TDMA)

Introduction1-22 Circuit Switching: TDMA and FDMA FDMA frequency time TDMA frequency time 4 users Example:

Introduction1-23 Network Core: Packet Switching each end-end data stream divided into packets  user A, B packets share network resources  each packet uses full link bandwidth  resources used as needed resource contention:  aggregate resource demand can exceed amount available  congestion: packets queue, wait for link use  store and forward: packets move one hop at a time m transmit over link m wait turn at next link Bandwidth division into “pieces” Dedicated allocation Resource reservation

Introduction1-24 Packet Switching: Statistical Multiplexing Sequence of A & B packets does not have fixed pattern  statistical multiplexing. In TDM each host gets same slot in revolving TDM frame. A B C 10 Mbs Ethernet 1.5 Mbs D E statistical multiplexing queue of packets waiting for output link

Introduction1-25 Packet switching versus circuit switching  Great for bursty data m resource sharing m simpler, no call setup  Excessive congestion: packet delay and loss m protocols needed for reliable data transfer, congestion control  Q: How to guarantee bandwidth and Quality Of Service (QOS)? (easy with circuit switching!) m Needed for audio/video apps m Still an unsolved problem (chapter 6) Is packet switching always better?

Introduction1-26 Packet-switching: store-and-forward  Takes L/R seconds to transmit (push out) packet of L bits on to link of R bps  Entire packet must arrive at router before it can be transmitted on next link: store and forward  End to end delay = (#hops)*L/R Example:  L = 7.5 Mbits  R = 1.5 Mbps  One link (hop): L/R=5sec  End to end delay = 3*L/R=15 sec R R R L

Introduction1-27 Packet Switching: Message Segmenting and Pipelining Now break up the message into 5000 packets  Each packet 1,500 bits  1 msec to transmit packet on one link  pipelining: each link works in parallel  5 sec for each link  E2E Delay= *2  Delay reduced from 15 sec to sec

Introduction1-28 Packet-switched networks: routing  Goal: move packets through routers from source to destination (using which path?) m we’ll study several path selection (i.e. routing) algorithms (chapter 4)  datagram network/routing: m destination address in packet determines next hop m routes may change during session m analogy: driving, asking directions  virtual circuit network/routing: m each packet carries tag (virtual circuit ID), tag determines next hop m fixed path determined at call setup time, remains fixed thru call m routers maintain per-call state

Introduction1-29 Network Taxonomy Telecommunication networks Circuit-switched networks FDM TDM Packet-switched networks Networks with VCs Datagram Networks Internet is Datagram network Provides both connection-oriented (TCP) and connectionless (UDP) services Packet-switched networks Networks with VCs Datagram Networks TCP Connection Service UDP Connection-less Service

Introduction1-30 Lecture 1: Main concepts  Network, internet, Internet, intranet  What’s a protocol?  Network edge, core, access network  Network services m Connectionless (UDP) and connection (TCP) m Client/server vs. Peer to Peer  Routing m Packet-switching versus circuit-switching (FDM,TDM) m Packet segmentation and pipelining m Datagram vs. virtual circuit (VC) routing

Introduction1-31 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and ISPs 1.6 Delay & loss in packet-switched networks 1.7 Protocol layers, service models 1.8 History

Introduction1-32 Internet History  1961: Kleinrock - queueing theory shows effectiveness of packet- switching  1964: Baran - packet- switching in military nets  1967: ARPAnet conceived by Advanced Research Projects Agency  1969: first ARPAnet node operational  1972: m ARPAnet demonstrated publicly m NCP (Network Control Protocol) first host- host protocol m first program m ARPAnet has 15 nodes : Early packet-switching principles

Introduction1-33 Internet History  1970: ALOHAnet satellite network in Hawaii  1973: Metcalfe’s PhD thesis proposes Ethernet  1974: Cerf and Kahn - architecture for interconnecting networks  late70’s: proprietary architectures: DECnet, SNA, XNA  late 70’s: switching fixed length packets (ATM precursor)  1979: ARPAnet has 200 nodes Cerf and Kahn’s internetworking principles: m minimalism, autonomy - no internal changes required to interconnect networks m best effort service model m stateless routers m decentralized control define today’s Internet architecture : Internetworking, new and proprietary nets

Introduction1-34 Internet History  1983: deployment of TCP/IP  1982: SMTP protocol defined  1983: DNS defined for name-to-IP- address translation  1985: FTP protocol defined  1988: TCP congestion control  new national networks: Csnet, BITnet, NSFnet, Minitel  100,000 hosts connected to confederation of networks : new protocols, a proliferation of networks

Introduction1-35 Internet History  Early 1990’s: ARPAnet decommissioned  1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)  early 1990s: Web m hypertext [Bush 1945, Nelson 1960’s] m HTML, HTTP: Berners-Lee m 1994: Mosaic, later Netscape m late 1990’s: commercialization of the Web Late 1990’s – 2000’s:  network security to forefront  est. 50 million host, 100 million+ users  backbone links running at Gbps 1990, 2000’s: commercialization, the Web, new apps

Introduction1-36 Introduction: Summary Covered a “ton” of material!  Internet overview  what’s a protocol?  network edge, core, access network m packet-switching versus circuit-switching  Internet/ISP structure  performance: loss, delay  layering and service models  history You now have:  context, overview, “feel” of networking  more depth, detail to follow!