CS61C L19 VM © UC Regents 1 CS61C - Machine Structures Lecture 19 - Virtual Memory November 3, 2000 David Patterson

Slides:



Advertisements
Similar presentations
Virtual Memory. The Limits of Physical Addressing CPU Memory A0-A31 D0-D31 “Physical addresses” of memory locations Data All programs share one address.
Advertisements

16.317: Microprocessor System Design I
CSIE30300 Computer Architecture Unit 10: Virtual Memory Hsin-Chou Chi [Adapted from material by and
COMP 3221: Microprocessors and Embedded Systems Lectures 27: Virtual Memory - III Lecturer: Hui Wu Session 2, 2005 Modified.
Virtual Memory Adapted from lecture notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley.
CS61C L35 VM I (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L34 Virtual Memory I (1) Garcia, Spring 2007 © UCB 3D chips from IBM  IBM claims to have found a way to build 3D chips by stacking them together.
Chap. 7.4: Virtual Memory. CS61C L35 VM I (2) Garcia © UCB Review: Caches Cache design choices: size of cache: speed v. capacity direct-mapped v. associative.
CS 61C L24 VM II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Virtual Memory Adapted from lecture notes of Dr. Patterson and Dr. Kubiatowicz of UC Berkeley and Rabi Mahapatra & Hank Walker.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 34 – Virtual Memory II Jim Cicconi of AT&T says that the surge of video.
Virtual Memory.
CS61C L24 Cache III, VM I(1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #24 – Cache.
CS 61C L23 VM I (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #23: VM I Andy Carle.
COMP3221 lec36-vm-I.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 13: Virtual Memory - I
Memory Management and Paging CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han.
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 16 Instructor: L.N. Bhuyan
CS 61C L24 VM II (1) A Carle, Summer 2005 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #24: VM II Andy Carle.
CS61C L25 Virtual Memory I (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25.
COMP 3221: Microprocessors and Embedded Systems Lectures 27: Virtual Memory - II Lecturer: Hui Wu Session 2, 2005 Modified.
CS 61C L35 Caches IV / VM I (1) Garcia, Fall 2004 © UCB Andy Carle inst.eecs.berkeley.edu/~cs61c-ta inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS 61C L25 VM III (1) Garcia, Spring 2004 © UCB TA Chema González www-inst.eecs/~cs61c-td inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L35 Virtual Memory II (1) Garcia, Spring 2007 © UCB Hardware repair?!  This technology allows you to “patch” your hardware after it has been installed.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 35 – Virtual Memory III Researchers at three locations have recently added.
ECE 232 L27.Virtual.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 27 Virtual.
CS61C L34 Virtual Memory II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley.
CS61C L36 VM II (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
CS61C L33 Virtual Memory I (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UC Berkeley.
©UCB CS 162 Ch 7: Virtual Memory LECTURE 13 Instructor: L.N. Bhuyan
CS 430 – Computer Architecture 1 CS 430 – Computer Architecture Virtual Memory William J. Taffe using slides of David Patterson.
Cs 61C L18 Cache2.1 Patterson Spring 99 ©UCB CS61C Improving Cache Memory and Virtual Memory Introduction Lecture 18 April 2, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 33 – Virtual Memory I OCZ has released a 1 TB solid state drive (the biggest.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 34 – Virtual Memory II Researchers at Stanford have developed “nanoscale.
©UCB CS 161 Ch 7: Memory Hierarchy LECTURE 24 Instructor: L.N. Bhuyan
COMP3221 lec37-vm-II.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lectures 13: Virtual Memory - II
CS61C L37 VM III (1)Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures.
Lecture 21 Last lecture Today’s lecture Cache Memory Virtual memory
CS 61C L7.1.1 VM I (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture VM I Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
CS 61C L7.1.2 VM II (1) K. Meinz, Summer 2004 © UCB CS61C : Machine Structures Lecture VM II Kurt Meinz inst.eecs.berkeley.edu/~cs61c.
Lecture 19: Virtual Memory
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 35 – Virtual Memory III ”The severity of the decline in the market is further evidence.
Virtual Memory. Virtual Memory: Topics Why virtual memory? Virtual to physical address translation Page Table Translation Lookaside Buffer (TLB)
Review (1/2) °Caches are NOT mandatory: Processor performs arithmetic Memory stores data Caches simply make data transfers go faster °Each level of memory.
Virtual Memory. Virtual Memory: Topics Why virtual memory? Virtual to physical address translation Page Table Translation Lookaside Buffer (TLB)
Review °Apply Principle of Locality Recursively °Manage memory to disk? Treat as cache Included protection as bonus, now critical Use Page Table of mappings.
Multilevel Caches Microprocessors are getting faster and including a small high speed cache on the same chip.
Csci 136 Computer Architecture II – Virtual Memory
IT 251 Computer Organization and Architecture
LECTURE 12 Virtual Memory. VIRTUAL MEMORY Just as a cache can provide fast, easy access to recently-used code and data, main memory acts as a “cache”
CS203 – Advanced Computer Architecture Virtual Memory.
CS161 – Design and Architecture of Computer
Lecturer PSOE Dan Garcia
ECE232: Hardware Organization and Design
Memory COMPUTER ARCHITECTURE
CS161 – Design and Architecture of Computer
Lecture 12 Virtual Memory.
IT 251 Computer Organization and Architecture
Some of the slides are adopted from David Patterson (UCB)
There is one handout today at the front and back of the room!
Lecture 14 Virtual Memory and the Alpha Memory Hierarchy
Review (1/2) Caches are NOT mandatory:
Csci 211 Computer System Architecture – Review on Virtual Memory
Instructor Paul Pearce
Some of the slides are adopted from David Patterson (UCB)
Morgan Kaufmann Publishers Memory Hierarchy: Virtual Memory
CSE 451: Operating Systems Autumn 2003 Lecture 10 Paging & TLBs
CSE 451: Operating Systems Autumn 2003 Lecture 10 Paging & TLBs
Albert Chae, Instructor
COMP3221: Microprocessors and Embedded Systems
CS61C Virtual Memory, 2nd try + Advice on Courses Lecture 19
Presentation transcript:

CS61C L19 VM © UC Regents 1 CS61C - Machine Structures Lecture 19 - Virtual Memory November 3, 2000 David Patterson

CS61C L19 VM © UC Regents 2 Review (1/2) °Caches are NOT mandatory: Processor performs arithmetic Memory stores data Caches simply make things go faster °Each level of memory hierarchy is just a subset of next higher level °Caches speed up due to temporal locality: store data used recently °Block size > 1 word speeds up due to spatial locality: store words adjacent to the ones used recently

CS61C L19 VM © UC Regents 3 Review (2/2) °Cache design choices: size of cache: speed v. capacity direct-mapped v. associative for N-way set assoc: choice of N block replacement policy 2nd level cache? Write through v. write back? °Use performance model to pick between choices, depending on programs, technology, budget,...

CS61C L19 VM © UC Regents 4 Another View of the Memory Hierarchy Regs L2 Cache Memory Disk Tape Instr. Operands Blocks Pages Files Upper Level Lower Level Faster Larger Cache Blocks Thus far { { Next: Virtual Memory

CS61C L19 VM © UC Regents 5 Virtual Memory °If Principle of Locality allows caches to offer (usually) speed of cache memory with size of DRAM memory, then recursively why not use at next level to give speed of DRAM memory, size of Disk memory? °Called “Virtual Memory” Also allows OS to share memory, protect programs from each other Today, more important for protection vs. just another level of memory hierarchy Historically, it predates caches

CS61C L19 VM © UC Regents 6 Virtual to Physical Addr. Translation °Each program operates in its own virtual address space; ~only program running °Each is protected from the other °OS can decide where each goes in memory °Hardware (HW) provides virtual -> physical mapping virtual address (inst. fetch load, store) Program operates in its virtual address space HW mapping physical address (inst. fetch load, store) Physical memory (incl. caches)

CS61C L19 VM © UC Regents 7 Simple Example: Base and Bound Reg 0  OS User A User B User C $base $base+ $bound °Want discontinuous mapping °Process size >> mem °Addition not enough! => use Indirection! Enough space for User D, but discontinuous (“fragmentation problem”)

CS61C L19 VM © UC Regents 8 Mapping Virtual Memory to Physical Memory 0 Physical Memory  Virtual Memory CodeStatic Heap Stack 64 MB °Divide into equal sized chunks (about 4KB) 0 °Any chunk of Virtual Memory assigned to any chuck of Physical Memory (“page”)

CS61C L19 VM © UC Regents 9 Paging Organization (assume 1 KB pages) Addr Trans MAP Page is unit of mapping Page also unit of transfer from disk to physical memory page 0 1K Virtual Memory Virtual Address page 1 page 31 1K 2048 page 2... page Physical Address Physical Memory 1K page 1 page 7...

CS61C L19 VM © UC Regents 10 Virtual Memory Mapping Function °Cannot have simple function to predict arbitrary mapping °Use table lookup of mappings °Use table lookup (“Page Table”) for mappings: Page number is index °Virtual Memory Mapping Function Physical Offset = Virtual Offset Physical Page Number = PageTable[Virtual Page Number] (P.P.N. also called “Page Frame”) Page Number Offset

CS61C L19 VM © UC Regents 11 Address Mapping: Page Table Virtual Address: page no.offset Page Table Base Reg Page Table located in physical memory (actually, concatenation) index into page table + Physical Memory Address Page Table Val -id Access Rights Physical Page Address. V A.R. P. P. A....

CS61C L19 VM © UC Regents 12 Page Table °A page table is an operating system structure which contains the mapping of virtual addresses to physical locations There are several different ways, all up to the operating system, to keep this data around °Each process running in the operating system has its own page table “State” of process is PC, all registers, plus page table OS changes page tables by changing contents of Page Table Base Register

CS61C L19 VM © UC Regents 13 Page Table Entry (PTE) Format °Contains either Physical Page Number or indication not in Main Memory °OS maps to disk if Not Valid (V = 0) °If valid, also check if have permission to use page: Access Rights (A.R.) may be Read Only, Read/Write, Executable... Page Table Val -id Access Rights Physical Page Number V A.R. P. P. N. V A.R. P. P.N.... P.T.E.

CS61C L19 VM © UC Regents 14 Analogy °Book title like virtual address °Library of Congress call number like physical address °Card catalogue like page table, mapping from book title to call number °On card for book, in local library vs. in another branch like valid bit indicating in main memory vs. on disk °On card, available for 2-hour in library use (vs. 2-week checkout) like access rights

CS61C L19 VM © UC Regents 15 Address Map, Mathematically Speaking V = {0, 1,..., n - 1} virtual address space (n > m) M = {0, 1,..., m - 1} physical address space MAP: V --> M U {  } address mapping function MAP(a) = a' if data at virtual address a is present in physical address a' and a' in M =  if data at virtual address a is not present in M Processor Name Space V Addr Trans Mechanism OS fault handler Main Memory Disk a a a' 0 page fault physical address OS performs this transfer

CS61C L19 VM © UC Regents 16 Comparing the 2 levels of hierarchy °Cache VersionVirtual Memory vers. °Block or LinePage °MissPage Fault °Block Size: 32-64BPage Size: 4K-8KB °Placement:Fully Associative Direct Mapped, N-way Set Associative °Replacement: Least Recently Used LRU or Random(LRU) °Write Thru or BackWrite Back

CS61C L19 VM © UC Regents 17 Administrivia °Project 5 due Saturday midnight TA help Friday, not Saturday °Homework 8 (next week) Want to fill in page tables to learn material, so easiest way is to turn in paper; no electronic submission °Grading scale (same as Spring 99, Fall 99) 95% A+, 90% A, 85% A-, 80% B+, 75% B, 70% B-, 65% C+, 60% C, 55% C-, 45% D

CS61C L19 VM © UC Regents 18 Administrivia °Median: 37; °50% 42 to 31 °Avg: 35.4, Std. Dev. 8.3 % perfect or -1 point per question 1. Pliable Data 28%75% 2. Parts of a Computer89%98% 3. Starting a Program 86%100% 4. Networks 36%51% 5. Pointers (p’s and q’s)3%20% 6. Floating Point 56%77% 7. MIPS (self mod. Code)27%32% 8. Pointers in C and MIPS51%57%

CS61C L19 VM © UC Regents 19 Notes on Page Table °Solves Fragmentation problem: all chunks same size, so all holes can be used °OS must reserve “Swap Space” on disk for each process °To grow a process, ask Operating System If unused pages, OS uses them first If not, OS swaps some old pages to disk (Least Recently Used to pick pages to swap) °Each process has own Page Table °Will add details, but Page Table is essence of Virtual Memory

CS61C L19 VM © UC Regents 20 Virtual Memory Problem #1 °Not enough physical memory! Only, say, 64 MB of physical memory N processes, each 4GB of virtual memory! Could have 1K virtual pages/physical page! °Spatial Locality to the rescue Each page is 4 KB, lots of nearby references No matter how big program is, at any time only accessing a few pages “Working Set”: recently used pages

CS61C L19 VM © UC Regents 21 Virtual Address and a Cache Processor Trans- lation Cache Main Memory VA PA miss hit data Cache typically operates on physical addresses Page Table access is another memory access for each program memory access! Need to fix this!

CS61C L19 VM © UC Regents 22 Virtual Memory Problem #2 °Map every address  1 extra memory accesses for every memory access °Observation: since locality in pages of data, must be locality in virtual addresses of those pages °Why not use a cache of virtual to physical address translations to make translation fast? (small is fast) °For historical reasons, cache is called a Translation Lookaside Buffer, or TLB

CS61C L19 VM © UC Regents 23 Typical TLB Format VirtualPhysicalDirtyRef Valid Access Address AddressRights TLB just a cache on the page table mappings TLB access time comparable to cache (much less than main memory access time) Ref: Used to help calculate LRU on replacement Dirty: since use write back, need to know whether or not to write page to disk when replaced

CS61C L19 VM © UC Regents 24 What if not in TLB? °Option 1: Hardware checks page table and loads new Page Table Entry into TLB °Option 2: Hardware traps to OS, up to OS to decide what to do °MIPS follows Option 2: Hardware knows nothing about page table format

CS61C L19 VM © UC Regents 25 TLB Miss (simplified format) °If the address is not in the TLB, MIPS traps to the operating system When in the operating system, we don't do translation (turn off virtual memory) °The operating system knows which program caused the TLB fault, page fault, and knows what the virtual address desired was requested So we look the data up in the page table 291 valid virtual physical

CS61C L19 VM © UC Regents 26 If the data is in memory °We simply add the entry to the TLB, evicting an old entry from the TLB valid virtual physical

CS61C L19 VM © UC Regents 27 What if the data is on disk? °We load the page off the disk into a free block of memory, using a DMA transfer Meantime we switch to some other process waiting to be run °When the DMA is complete, we get an interrupt and update the process's page table So when we switch back to the task, the desired data will be in memory

CS61C L19 VM © UC Regents 28 What if we don't have enough memory? °We chose some other page belonging to a program and transfer it onto the disk if it is dirty If clean (other copy is up-to-date), just overwrite that data in memory We chose the page to evict based on replacement policy (e.g., LRU) °And update that program's page table to reflect the fact that its memory moved somewhere else

CS61C L19 VM © UC Regents 29 Translation Look-Aside Buffers TLBs usually small, typically entries Like any other cache, the TLB can be fully associative, set associative, or direct mapped Processor TLB Lookup Cache Main Memory VA PA miss hit data Trans- lation hit miss

CS61C L19 VM © UC Regents 30 Virtual Memory Problem #3 °Page Table too big! 4GB Virtual Memory ÷ 4 KB page  ~ 1 million Page Table Entries  4 MB just for Page Table for 1 process, 25 processes  100 MB for Page Tables! °Variety of solutions to tradeoff memory size of mapping function for slower when miss TLB Make TLB large enough, highly associative so rarely miss on address translation CS 162 will go over more options and in greater depth

CS61C L19 VM © UC Regents 31 2-level Page Table 0 Physical Memory 64 MB Virtual Memory  Code Static Heap Stack nd Level Page Tables Super Page Table

CS61C L19 VM © UC Regents 32 Page Table Shrink : °Single Page Table Page Number Offset 20 bits12 bits °Multilevel Page Table Page Number Super Page No. Offset 10 bits 12 bits °Only have second level page table for valid entries of super level page table

CS61C L19 VM © UC Regents 33 Space Savings for Multi-Level Page Table °If only 10% of entries of Super Page Table have valid enties, then total mapping size is roughly 1/10-th of single level page table Exercise 7.35 explores exact size

CS61C L19 VM © UC Regents 34 Note: Actual MIPS Process Memory Allocation 0  ( ) Address Code Static User code/data space Heap Stack I/O device registers $sp $gp  2  ( ) I/O Regs Except.Exception Handlers OS code/data space  2  (2 31 ) OS restricts I/O Registers, Exception Handlers to OS

CS61C L19 VM © UC Regents 35 Things to Remember 1/2 °Apply Principle of Locality Recursively °Reduce Miss Penalty? add a (L2) cache °Manage memory to disk? Treat as cache Included protection as bonus, now critical Use Page Table of mappings vs. tag/data in cache °Virtual memory to Physical Memory Translation too slow? Add a cache of Virtual to Physical Address Translations, called a TLB

CS61C L19 VM © UC Regents 36 Things to Remember 2/2 °Virtual Memory allows protected sharing of memory between processes with less swapping to disk, less fragmentation than always swap or base/bound °Spatial Locality means Working Set of Pages is all that must be in memory for process to run fairly well °TLB to reduce performance cost of VM °Need more compact representation to reduce memory size cost of simple 1-level page table (especially 32-  64-bit address) °Next: Introduction to processors design