IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Optical cavity with high quality factor Q Photonic crystals course final presentation Karin Söderström.

Slides:



Advertisements
Similar presentations
Cavity cooling of a single atom James Millen 21/01/09.
Advertisements

Engineering the light matter interaction with ultra-small open access microcavities Jason M. Smith Department of Materials, University of Oxford, Parks.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
The feasibility of Microwave- to-Optical Photon Efficient Conversion By Omar Alshehri Waterloo, ON Fall 2014
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
The Nobel Prize in Physics 2012 Serge Haroche David J. Wineland Prize motivation: "for ground-breaking experimental methods that enable measuring and manipulation.
Emergent Majorana Fermion in Cavity QED Lattice
Shanhui Fan, Shanshan Xu, Eden Rephaeli
Nanophotonic Devices for Quantum Optics Feb 13, 2013 GCOE symposium Takao Aoki Waseda University.
From weak to strong coupling of quantum emitters in metallic nano-slit Bragg cavities Ronen Rapaport.
Nanophotonics Class 6 Microcavities. Optical Microcavities Vahala, Nature 424, 839 (2003) Microcavity characteristics: Quality factor Q, mode volume V.
Entanglement of Movable Mirrors in a Correlated Emission Laser
Limits and Interfaces in Sciences / Kumboldt-Kolleg São Paulo-SP,
Anton Samusev JASS’05 30 March – 9 April, 2005 Saint Petersburg State Polytechnical University, Ioffe Physico-Technical Institute Polarization effects.
Developing photonic technologies for dielectric laser accelerators
Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université.
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Polariton Physics and Devices Pavlos G. Savvidis Dept of Materials Sci. & Tech Microelectronics Group University of Crete / IESL.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes Richard Younger Journal Club Sept. 15, 2005 Antonio Badolato, kevin Hennessy,
Optoelectronics Group Electronics Department University of Pavia Operating Regimes And Modelling Of Single Mode Monolithic Semiconductor Ring Lasers G.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
CAVITY QUANTUM ELECTRODYNAMICS IN PHOTONIC CRYSTAL STRUCTURES Photonic Crystal Doctoral Course PO-014 Summer Semester 2009 Konstantinos G. Lagoudakis.
Agilent Technologies Optical Interconnects & Networks Department Photonic Crystals in Optical Communications Mihail M. Sigalas Agilent Laboratories, Palo.
Prof. Juejun (JJ) Hu MSEG 667 Nanophotonics: Materials and Devices 9: Absorption & Emission Processes Prof. Juejun (JJ) Hu

Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
High-Q small-V Photonic-Crystal Microcavities
2 ICO R. Filter, K. Słowik, J. Straubel, F. Lederer, and C. Rockstuhl Institute of Condensed Matter Theory and Solid State Optics Abbe.
Single atom lasing of a dressed flux qubit
420 nm [ Notomi et al. (2005). ] Resonance an oscillating mode trapped for a long time in some volume (of light, sound, …) frequency  0 lifetime  >>
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Physical Phenomena for TeraHertz Electronic Devices
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 16 (3/31/2014) Slide Introduction to Quantum Optics.
CNRS LKB – Task T1 Current status of the experiment on optomechanical coupling Sensitivity: 5.10  20 m.Hz  1/2   New high-finesse, high-power cavity.
Some of the applications of Photonic Crystals (by no means a complete overview) Prof. Maksim Skorobogatiy École Polytechnique de Montréal.
OSC’s Industrial Affiliates Workshop, Tucson, Arizona March, 2005 GaAsSb QUANTUM WELLS FOR OPTOELECTRONICS AND INTEGRATED OPTICS Alan R. Kost, Xiaolan.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Ultra-small mode volume, high quality factor photonic crystal microcavities in InP-based lasers and Si membranes Kartik Srinivasan, Paul E. Barclay, Matthew.
Spontaneous Emission in 2D Arbitrary Inhomogeneous Environment Peng-Fei Qiao, Wei E. I. Sha, Yongpin P. Chen, Wallace C. H. Choy, and Weng Cho Chew * Department.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
Itoh Laboratory Masataka Yasuda
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
OPTOFLUIDIC DEVICES FOR SINGLE CELL MANIPULATION Ana Rita Ribeiro, Ariel Guerreiro, Pedro Jorge New Challenges in the European Area - Young Scientist's.
Chapter 11. Laser Oscillation : Power and Frequency
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
NIRT: Semiconductor nanostructures and photonic crystal microcavities for quantum information processing at terahertz frequencies M. S. Sherwin and P.
Applications of Photonic Crystals on Sensing Presentation for the lecture Photonic Crystals Zhaolu Diao Laboratory of Quantum Optoelectronics.
광섬유 센서를 이용한 변형 측정 김대현 Department of Aerospace Engineering Smart Structures and Composites Laboratory Optical Fiber Jacket (  = 300.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
International Scientific Spring 2016
Solar chameleon detection at CAST Part II: The optical resonator Sauman Cheng and Manwei Chan.
Optomechanics Experiments
High Power LD, LDA & LDS Speaker: Shiuan-Li Lin Advisor : Sheng-Lung Huang Solid-State Laser Crystal and Device Laboratory.
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Strong Coupling between Molecules and Plasmonic Nanostructures
Coupled atom-cavity system
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Advanced Optical Sensing
Kenji Kamide* and Tetsuo Ogawa
Tuning Interactions Between Quantum Dots and Cavities
by A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J
Jaynes-Cummings Hamiltonian
Presentation transcript:

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Optical cavity with high quality factor Q Photonic crystals course final presentation Karin Söderström

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström2 Outline 1) Optical cavities and their use (history) 2) Quality factor Q 3) Lots of cavities 4) Applications of Cavities with PHC Quantum optic Frequency selective devices

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström3 The simplest optical cavity: A Fabry-Pérot resonator is composed of two parallel mirrors Associated with an active medium this cavity realized with one mirror with R<100% leads to one of the greatest discovery of the century Optical cavities and their use Laser by Th. Maiman Nature 187, (1960) Macro-cavity

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström4 Optical cavities and their use One of the first study on resonator lead to the theoretical great result: –By placing a two-level system in a resonator you can modify (enhance or stop) the spontaneous emission of the two–level system E.M.Purcell Phys. Rev. 69 (1946) p. 681 This information lead to many hope in different field: –One photon source –Quantum entanglement of radiation and matter is possible Thompson, R. J., Rempe, G. & Kimble, H. J. Phys. Rev. Lett. 68, 1132–1135 (1992). P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu (2000) Science 290 (5500), 2282.

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström5 Quality factor Q Definition: Q = P in the cavity / P Losses α lifetime photon in the cavity  Q α 1/  where  is the linewidth If R, Q. The quality of the information.

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström6 Lots of different cavities Fabry-Pérot cavity made of two Bragg mirrors Cavity made by a defect in a photonic crystal Kerry J. Vahala, Nature, 424, 6950, 839, (2003)

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström7 Outline 1) Optical cavities and their use (history) 2) Quality factor Q 3) Lots of cavities 4) Cavities with PHC Quantum optic Frequency selective devices

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström8 PHC Cavities Applications Quantum optics: Control of the radiative lifetime (Purcell Effect)F p α Q mode /V mode Painter,O. et al. Science 284, 1819–1821 (1999). Applications: Data transport in optical fiber. Easy writing and reading of CD, DVD (small spot size) Miniature laser, LED, VCSEL,  W threshold Control of the  in a micropillar Solomon et al,Phys.Rev.lett., 86, 17, 3903, (2001). t=1.3ns t=280ps

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström9 PHC Cavities Applications Quantum optics: –Strong coupling (of great interest due to the mode volume) single-atom cavity quantum electrodynamics in the strong coupling regime Theoretically proven: Vuckovic et al, Phys. Rev. E, 65, , (2001) Experimentally shown: Yoshie et al, Nature 432, (2004) for a QD Applications: Study of center of mass motion: Rempe, Applied physics. B, 60, 233 (1995) Single photon source: B Deveaud-Pledran, et al - US Patent App. 11/394,518, (2006) Beauty of physics BEC Theoretical: E Ostrovskaya, Y Kivshar, Optics Exp. vol12, (2004)

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström10 PHC Cavities Applications Frequency devices (the mode volume is less important) Akahane et al, Nature, 425, 6961, 944, (2003) Applications: Very small spectrometer, Multiplexer, Demultiplexer, Filters, Spectroscopy

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström11 Frequency devices (V mode is less important, here Q=400) PHC Cavities Applications Applications: Very small spectrometer, Multiplexer, Demultiplexer Noda et al, Nature, 407, 608, (2000) Shinya et al, Optics Exp,14, 25, 12394, (2006)

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström12 PHC Cavities Applications Frequency devices (the mode volume is less important) Applications: Filters Kuramochi et al, Appl. Phys. Lett., 88, , (2006) Q th : 7*10^7

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström13 PHC Cavities Applications Frequency devices (the mode volume is less important) Application: Spectroscopy tool A photonic crystal sensor with a resolution of better than  n =0.002 with a Q factor of 400 Chow et al, Optics letters, 29, 10, 1093, (2004) In this case it is not a bridge: small amount of sample only needed The Caltech Nanofabrication Group

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström14 The cavity is the basis to construct devices with photonic crystals with different functionality modes –Single photon source needed for quantum computation Conclusions Lots of progresses can be made on Q (from theoretical studies) but the limits of the fabrication process can be reached before Lots of different applications in many fields –Laser, spectrometer, multiplexer, filter, spectroscopy

IMT INSTITUT DE MICROTECHNIQUE NEUCHÂTEL Karin Söderström15 ?Questions? Thanks for your attention