The new Silicon detector at RunIIb Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96.

Slides:



Advertisements
Similar presentations
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
Advertisements

Current limits (95% C.L.): LEP direct searches m H > GeV Global fit to precision EW data (excludes direct search results) m H < 157 GeV Latest Tevatron.
Gavril Giurgiu, Carnegie Mellon 1 B s Mixing at CDF Seminar at Fermi National Accelerator Laboratory Gavril Giurgiu Carnegie Mellon University August 16,
Tau dilepton channel The data sample used in this analysis comprises high-p T inclusive lepton events that contain an electron with E T >20 GeV or a muon.
Summary of Results and Projected Sensitivity The Lonesome Top Quark Aran Garcia-Bellido, University of Washington Single Top Quark Production By observing.
ICFP 2005, Taiwan Colin Gay, Yale University B Mixing and Lifetimes from CDF Colin Gay, Yale University for the CDF II Collaboration.
Search for B s oscillations at D  Constraining the CKM matrix Large uncertainty Precise measurement of V td  properly constrain the CKM matrix yield.
Summary of Results and Projected Precision Rediscovering the Top Quark Marc-André Pleier, Universität Bonn Top Quark Pair Production and Decay According.
Searching for New Physics at the Energy Frontier Rob Roser (Fermilab/CDF) 1.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
DPF Victor Pavlunin on behalf of the CLEO Collaboration DPF-2006 Results from four CLEO Y (5S) analyses:  Exclusive B s and B Reconstruction at.
Top Physics at the Tevatron Mike Arov (Louisiana Tech University) for D0 and CDF Collaborations 1.
On the Trail of the Higgs Boson Meenakshi Narain.
Search for resonances The fingerprints of the Top Quark Jessica Levêque, University of Arizona Top Quark Mass Measurement Top Turns Ten Symposium, Fermilab,
Chris Barnes, Imperial CollegeWIN 2005 B mixing at DØ B mixing at DØ WIN 2005 Delphi, Greece Chris Barnes, Imperial College.
B Production and Decay at DØ Brad Abbott University of Oklahoma BEACH 2004 June 28-July 3.
Donatella Lucchesi1 B Physics Review: Part II Donatella Lucchesi INFN and University of Padova RTN Workshop The 3 rd generation as a probe for new physics.
Workshop on Quarkonium, November 8-10, 2002 at CERN Heriberto Castilla DØ at Run IIa as the new B-Physics/charmonium player Heriberto Castilla Cinvestav-IPN.
Alexander Khanov 25 April 2003 DIS’03, St.Petersburg 1 Recent B Physics results from DØ The B Physics program in D Ø Run II Current analyses – First results.
Nick Hadley Run II Physics (I) Nick Hadley The University of Maryland New Perspectives 2000 Fermilab - June 28, 2000.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Lepton/Photon 2003, Batavia, IL, USA August 11 th – 16 th Measurement of  b Branching Ratios in Modes Containing a  c Why are the  b branching fractions.
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
Standard Model Higgs Searches at the Tevatron (Low Mass : M H  ~140 GeV/c 2 ) Kohei Yorita University of Chicago The XLIIIrd Rencontres de Moriond EW.
Gavril Giurgiu, Carnegie Mellon, FCP Nashville B s Mixing at CDF Frontiers in Contemporary Physics Nashville, May Gavril Giurgiu – for CDF.
KIRTI RANJANDIS, Madison, Wisconsin, April 28, Top Quark Production Cross- Section at the Tevatron Collider On behalf of DØ & CDF Collaboration KIRTI.
Searches for the Standard Model Higgs at the Tevatron presented by Per Jonsson Imperial College London On behalf of the CDF and DØ Collaborations Moriond.
Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96 TeV  Instantaneous luminosity will.
DPF2000, 8/9-12/00 p. 1Richard E. Hughes, The Ohio State UniversityHiggs Searches in Run II at CDF Prospects for Higgs Searches at CDF in Run II DPF2000.
Measurements of Top Quark Properties at Run II of the Tevatron Erich W.Varnes University of Arizona for the CDF and DØ Collaborations International Workshop.
1 EPS2003, Aachen Nikos Varelas ELECTROWEAK & HIGGS PHYSICS AT DØ Nikos Varelas University of Illinois at Chicago for the DØ Collaboration
3/13/2005Sergey Burdin Moriond QCD1 Sergey Burdin (Fermilab) XXXXth Moriond QCD 3/13/05 Bs Mixing, Lifetime Difference and Rare Decays at Tevatron.
Feasibility of Detecting Leptoquarks With the CDF Detector Althea Moorhead Mentor: Darin Acosta.
B Masses and Lifetimes at the Tevatron Satoru Uozumi University of Tsukuba Duke University.
Chunhui Chen, University of Pennsylvania 1 Heavy Flavor Production and Cross Sections at the Tevatron Heavy Flavor Production and Cross Sections at the.
Paul Balm - EPS July 17, 2003 Towards CP violation results from DØ Paul Balm, NIKHEF (for the DØ collaboration) EPS meeting July 2003, Aachen This.
Study of pair-produced doubly charged Higgs bosons with a four muon final state at the CMS detector (CMS NOTE 2006/081, Authors : T.Rommerskirchen and.
Top Quark Physics At TeVatron and LHC. Overview A Lightning Review of the Standard Model Introducing the Top Quark tt* Pair Production Single Top Production.
By Henry Brown Henry Brown, LHCb, IOP 10/04/13 1.
Properties of B c Meson On behalf of DØ Collaboration Dmitri Tsybychev, SUNY at Stony Brook, PANIC05, Santa Fe, New Mexico B c is ground state of bc system.
RECENT RESULTS FROM THE TEVATRON AND LHC Suyong Choi Korea University.
Hiroshima Higgs Workshop 2006, Jan. 17 – 19, 2006 Higgs Searches at the Tevatron Kazuhiro Yamamoto (Osaka City University) for the CDF Collaboration 1.Tevatron.
Abstract Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of.
Mike HildrethEPS/Aachen, July B Physics Results from DØ Mike Hildreth Université de Notre Dame du Lac DØ Collaboration for the DØ Collaboration.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
Julia Thom, FNALEPS 2003 Aachen Rare Charm and B decays at CDF Julia Thom FNAL EPS 7/18/2003 Tevatron/CDF Experiment Decay Rate Ratios and CP Asymmetries.
1 Arnold Pompoš, SUSY03, Tucson, Arizona, June 5-10, 2003.
LCWS06, Bangalore, March 2006, Marcel DemarteauSlide 1 Higgs Searches at DØ LCWS06, Bangalore, India March 9-13, 2006 Marcel Demarteau Fermilab For the.
1 Experimental Particle Physics PHYS6011 Fergus Wilson, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (2) 3.Collider Experiments.
1 CMS Sensitivity to Quark Contact Interactions with Dijets Selda Esen (Brown) Robert M. Harris (Fermilab) DPF Meeting Nov 1, 2006.
Kinematics of Top Decays in the Dilepton and the Lepton + Jets channels: Probing the Top Mass University of Athens - Physics Department Section of Nuclear.
Jessica Levêque Rencontres de Moriond QCD 2006 Page 1 Measurement of Top Quark Properties at the TeVatron Jessica Levêque University of Arizona on behalf.
La Thuile, March, 15 th, 2003 f Makoto Tomoto ( FNAL ) Prospects for Higgs Searches at DØ Makoto Tomoto Fermi National Accelerator Laboratory (For the.
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
Backup slides Z 0 Z 0 production Once  s > 2M Z ~ GeV ÞPair production of Z 0 Z 0 via t-channel electron exchange. e+e+ e-e- e Z0Z0 Z0Z0 Other.
Semi-Leptonic B s Mixing at DØ Meghan Anzelc Northwestern University On Behalf of the DØ Collaboration DPF 2006.
A Precision Measurement of the Mass of the Top Quark Abazov, V. M. et al. (D0 Collaboration). Nature 429, (2004) Presented by: Helen Coyle.
B s Mixing Results for Semileptonic Decays at CDF Vivek Tiwari Carnegie Mellon University on behalf of the CDF Collaboration.
Viktor Veszpremi Purdue University, CDF Collaboration Tev4LHC Workshop, Oct , Fermilab ZH->vvbb results from CDF.
Studies of the Higgs Boson at the Tevatron Koji Sato On Behalf of CDF and D0 Collaborations 25th Rencontres de Blois Chateau Royal de Blois, May 29, 2013.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Suyong Choi (SKKU) SUSY Standard Model Higgs Searches at DØ Suyong Choi SKKU, Korea for DØ Collaboration.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
Experimental Particle PhysicsPHYS6011 Performing an analysis Lecture 5
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 6th May 2009 Fergus Wilson, RAL.
Top Quark a particle odyssey Todd Huffman University of Oxford
Experimental Particle Physics PHYS6011 Putting it all together Lecture 4 28th April 2008 Fergus Wilson. RAL.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL
Susan Burke, University of Arizona
Measurement of b-jet Shapes at CDF
Presentation transcript:

The new Silicon detector at RunIIb Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96 TeV  Instantaneous luminosity will increase up to L=5X10 32 cm -2 s -1  Average number of interactions per bunch crossing will be 15 at 396 ns (peak luminosity) What is the goal? The Fermilab collider program has the potential for revolutionizing our understanding of elementary particle physics. The combination of the upgrade of the Tevatron complex and the greatly improved detectors provides extraordinary opportunities for discovery The new Silicon detector at RunIIb Physics program at RunIIb How do we obtain high jet tagging efficiency ? We need a robust tracking efficiency, good impact parameter resolution & patter recognition. The success of RunIIb relies and benefits from excellent Silicon Detector. A new silicon detector, SVXIIb, will replace the actual SVXIIa to handle the high density tracking environment and to survive the higher luminosity The physics goals of RunIIb are broad and fundamental:  Tevatron is the world’s only source of top quarks: the top seems to be uniquely connected to the mechanism of mass generation  Tevatron can uniquely access the B S meson: its mixing rate can determine the length of one of the sides of the unitary triangle  Tevatron will experimentally test the new idea that gravity may propagate in more than 4dim of space-time  Search for light boson Higgs in the range 80 < m H < 120 GeV the Higgs mainly decay into b- bbar. This gives the signature of 2 jets. We will also search for associated production WH, ZH. A full replacement of SVXIIa is required due to the sensor lifetime: L00, r=1.3 cm 7 fb -1 L0, r=2.5 cm 4 fb -1 L1, r=4.1 cm 8 fb -1 L2, r=6.5 cm 11 fb -1 Significance of a potential Higgs discovery:   L*  2 with  =the b-jets tagging efficiency, L=luminosity Silicon Vertex Trigger at RunIIa CDF is running the first trigger for B mesons using displaced tracks from the Silicon detector at a hadron collider and it is working well. The measurement of the mass difference is interesting because it establishes the performance of the upgraded tracking systems in CDF II. From a total of 2360  70 D s candidates and 1350  60 D  candidates in 11.6 pb -1 of data, we find:  M=99.28  0.43(stat.)  0.27(syst.)MeV/c^2. This will be the first published result by CDF II. Lifetime measurements of the B  and B 0 serve as a proving ground for the techniques needed for B s lifetime and mixing analyses. Samples of B , B 0, and B s mesons have been exclusively reconstructed using a J/     trigger sample. In particular, 55 B s events are selected in the J/  channel from 70 pb -1 data. Fits to the c  distributions yield the following results: c  B+ =1.57  0.07(stat.)  0.02(syst.)ps c   =1.42  0.09(stat.)  0.02(syst.)ps c  Bs =1.26  0.20(stat.)  0.02(syst.)ps (The statistical errors are already comparable to the Run I results.) The flavor-changing neutral current decay D 0 to     is highly suppressed in the Standard Model B(D 0      ). We reconstruct D 0 to  +  - as a normalization mode and use the ratio of the two modes to set a limit on the D 0     branching ratio. Systematic uncertainties from detector and trigger efficiencies and selection requirements cancel in this ratio.We observe 0 events in the signal mass region when a side band calculation predicts a background of 1.7  0.7 events. As a result,we obtain B(D 0     )  2.4*10 -6 at 90%confidence level. This limit is more stringent than the current PDG world average of B(D 0     )  4.1*10 -6 We have also extracted samples of exclusively reconstructed B mesons in fully hadronic modes using the Silicon Vertex Trigger. This plot shows reconstructed mass distributions for B 0 meson.