High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Ultra High Speed InP Heterojunction Bipolar Transistors Mattias Dahlström Trouble is my business, (Raymond Chandler)
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
High speed InP-based heterojunction bipolar transistors Mark Rodwell University of California, Santa Barbara ,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
1 Bipolar Junction Transistor Models Professor K.N.Bhat Center for Excellence in Nanoelectronics ECE Department Indian Institute of Science Bangalore-560.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
1 Heterojunction Bipolar Transistors Heterojunction Bipolar Transistorsfor High-Frequency Operation D.L. Pulfrey Department of Electrical and Computer.
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
Revision Chapter 5.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Ultra high speed heterojunction bipolar transistor technology Mark Rodwell University of California, Santa Barbara ,
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
InAs Inserted HEMT 연성진.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
Multi-stage G-band ( GHz) InP HBT Amplifiers
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
80GHz Modulator Designs Ian Harrison School of Electrical and Electronic Engineering University of Nottingham UK Work done at Department of ECE University.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
CHAPTER 5: BIPOLAR TRANSISTORS & RELATED DEVICES
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Indium Phosphide and Related Materials
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
Contents GaAs HEMTs overview RF (Radio Frequency) characteristics
Introduction to GaAs HBT and current technologies
Bipolar Junction Transistors and Heterojunction Bipolar Transistors
A High-Dynamic-Range W-band
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
7.8 Frequency Limitations of Transistors
Heterojunction Bipolar Transistor
Power and Heat Power Power dissipation in CMOS logic arises from the following sources: Dynamic power due to switching current from charging and discharging.
Presentation transcript:

High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell Department of ECE University of California, Santa Barbara, USA , fax (1) Now with IBM Microelectronics, Essex Junction, VT (2) Now with Sandia National Labs, NM

Overview Fast devices and circuits need high current! –Current limited by Kirk current threshold Device heating –Thermal resistance  Device heating Design of low thermal resistance HBT High Current Devices with state of the art RF performance

The need for high current density Scaling laws: Single HBT: f  J e =6.9 mA/  m 2 Output GHz, f clk = GHz Minimize capacitance charging times!  Increase current density Digital circuit Key performance parameters: J e =8 mA/  m 2

Thermal conductivity of common materials Ternaries lattice matched to InP

HBT: Where is the heat generated? V be = 0.95 V, V ce = 1.3 V Power generation: J E x V CE =6 x 1.5 V=9 mW/  m 2 In the intrinsic collector

HBT: heat transport Main heat transport is through the subcollector to the substrate Up to 30 % heat transport up through the emitter contact Thermal resistance of materials in collector and subcollector critical

How to design a low thermal resistance HBT A five step process Identify high thermal resistance materials  change them low thermal resistance materials Very simple!

SHBT: InGaAs collector Design of low thermal resistance HBT: Initial design: InGaAs collector

SHBT: InGaAs collector, InP emitter Design of low thermal resistance HBT: Emitter: InAlAs  InP

DHBT: InGaAs/InP collector Design of low thermal resistance HBT: InGaAs collector  InP collector with InGaAlAs grade

DHBT: InGaAs/InP collector, InGaAs/InP subcollector Design of low thermal resistance HBT: InGaAs subcollector  InGaAs/InP composite subcollector

DHBT: InGaAs/InP collector, thin InGaAs/InP subcollector Design of low thermal resistance HBT: Thick InGaAs in subcollector  thin InGaAs in subcollector

Metamorphic-DHBT: InGaAs/InP collector, InGaAs/InP subcollector Design of low thermal resistance Metamorphic HBT: InAlAs,InAlP, InGaAs buffers  InP buffer Young-Min Kim

Experimental Measurement of Temperature Rise Temperature rise can be calculated by measuring I C, V CE and  V BE No thermal instability as long as slope<∞ each V BE gives a unique I C

Thermoelectric feedback coefficient (data from W. Liu) Thermoelectric feedback coefficient for AlGaAs/GaAs HBTs 4 % smaller Not a large influence from material or structure variations W. Liu: “Thermal Coupling in 2-Finger Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol 42 No6, June 1995 W. Liu: H-F. Chau, E. Beam, "Thermal properties and Thermal Instabilities of InP-Based Heterojunction Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol 43 No3, March 1996

Compared to previous UCSB mesa HBT results: Thinner InP collector—decrease  c Collector doping increased—increase J Kirk Thinner InGaAs in subcollector—remove heat Thicker InP subcollector—decrease R c,sheet High f  DHBT Layer Structure and Band Diagram V be = 0.75 V, V ce = 1.3 V Emitter Collector Base InGaAs 3E19 Si 400 Å InP 3E19 Si 800 Å InP 8E17 Si 100 Å InP 3E17 Si 300 Å InGaAs 8E19  5E19 C 300 Å Setback 3E16 Si 200 Å InP 3E18 Si 30 Å InP 3E16 Si 1030 Å SI-InP substrate Grade 3E16 Si 240 Å InP 1.5E19 Si 500 Å InGaAs 2E19 Si 125 Å InP 3E19 Si 3000 Å

Thermal resistance results: lattice matched Measured thermal resistances for lattice matched HBTs. Ic= 5 mA, Vce=1.5 V, P=7.5 mW 25 nm InGaAs 12.5 nm InGaAs DeviceBuffer (  m) T c (nm)T sc InGaAs (nm) T sc InP (nm)  ­ JA K/mW DHBT-M DHBT-19b DHBT nm InGaAs  25 nm InGaAs: large improvement

Thermal resistance results: metamorphic Measured thermal resistances for metamorphic HBTs. Ic= 5 mA, Vce=1.5 V, P=7.5 mW 25 nm InGaAs InP buffer 50 nm InGaAs InAlP buffer InAlP  InP buffer: large improvement 50 nm InGaAs  25 nm InGaAs: small improvement Device Buffer (  m) T c (nm)T sc InGaAs (nm) T sc InP (nm)  ­ JA K/mW M-HBT-1InAlP M-HBT-2InP M-HBT-11InP

Device and circuit results Zach Griffith Continuous operation at high current densities greater than peak rf performance (J e = 8 mA/  m 2 ) 28 transistor static frequency f clk =118.7 GHz shown To be reported, 150 GHz static divider using same Type 1 DHBT structure—chirped superlattice Transistor operation at 13 mA/  m nm InGaAs/InP collector 370 GHz f t at J c >8 mA/  m 2

Our Mesa DHBTs have Safe Operating Area Extending beyond High-Speed Logic Bias Conditions Low-current breakdown is > 6 Volts this has little bearing on circuit design Safe operating area is > 10 mW/um 2 these HBTs can be biased....at ECL voltages...while carrying the high current densities needed for high speed

Conclusions DHBT design with InP subcollector  very low thermal resistance Metamorphic DHBT with InP buffer  low thermal resistance DHBT operation at J c >13 mA/  m 2 Optimal device and circuit performance at J c up to 8 mA/  m 2 HBT I-V operating area allows static frequency dividers operating at speeds over 150 GHz

Backup slides

HBT

Why is thermal management important? As J increases so does the power density. This will lead to an increase in the temperature. TCTC J Kirk LeLe ÅmAμm -2 μm For V CE =1V  P D =10.6mWμm -3 For V CE =1V  P D =98mWμm -3 !!

Thermal Modeling of HBT (1) 3D Finite Element using Ansys 5.7 K (Thermal conductivity) depends temperature K depends on doping For GaAs heavily doped GaAs 65% less than undoped GaAs Unknown for InP or InGaAs use GaAs dependency J.C.Brice in “Properties of Indium phosphide” eds S Adachi and J.Brice pubs INSPEC London p20-21 S Adachi in “Properties of Latticed –Matched and strained Indium Gallium Arsenide” ed P Bhattacharya pubs INSPEC London p34-39 “CRC Materials science and engineering handbook”, 2nd edition,eds J.F Shackelford,A.Alexander, and J.S Park, pubs CRC press, Boca Raton, p270 MaterialK 300 nK 300 (exp)Refs InP InGaAs Au  Large uncertainty in values

Validation of Model Caused by Low K of InGaAs Max T in Collector Ave Tj (Base-Emitter) =26.20°C Measured Tj=26°C Good agreement. Advice Limit InGaAs Increase size of emitter arm Ian Harrison

Analysis of 40,80,160 Gbit/s devices To obtain speed inprovements require to scale other device parameters. Speed(Gbit/s) Collector Thickness(Å) Base Sheet resistance ()() Base contact resistance (-m2)(-m2) Base Thickness(Å) Base Mesa width (  m) Current Density (mA/  m 2 ) Emitter. Junction Width (  m) Emitter Parasitic resistivity (-m2)(-m2) Emitter Length (  m) Predicted MS-DFF(GHz) FtFt (GHz) F max (GHz) TjTj (K) T Max (K) T Max (No Etch Stop layer)(K) Conservative 1.5x bit rate Reduction of parasitic C BC Device parameters after Rodwell et al When not switching values will double Ian Harrison

Mesa DHBT with 0.6  m emitter width, 0.5  m base contact width Z. Griffith, M Dahlström

How we measure thermal resistance

Layout improvement: Emitter heat sinking Emitter interconnect metal  2 μm to 7 μm ~30 % of heat out through emitter Negligible increase in C be Improved emitter heatsinking