1 數位控制(五)
2 data hold
3 x(t) G(s) y(t) In continuous-time In discrete-time g(kT) is the system ’ s weighting sequence g(t) is the system ’ s weighting sequence x(t) G(s) y(t)x*(t) X(z)
4 pulse transfer function Transfer function continuous-time system Laplace transform Pulse transfer function discrete-time system z transform G(z) X(z) Y(z)
5 x(t) G(s) y(t) x*(t) X(z) x(t) G(s) y(t)
6 Pulse transfer function of cascade elements x(t) y(t) x*(t)u*(t) x(t) y(t) x*(t)
7 Pulse transfer function of closed-loop system R(s) G(s) C(s) E*(s) + - H(s) E(s)
8 Pulse transfer function of a digital controller
9 Closed-loop pulse transfer function r(t) Plant c(t) e(kT) + - e(t) Digital Controller Zero-order hold D/A R(s) Plant C(s) E*(s) + - E(s) G* D (s) Sampler A/D m(kT)u(t) M*(s)
10 PID Controller Proportional-Integral-Derivative (PID) Controller Most traditional and has been use successfully for over 50 years. P: action proportional to the actuating error between the input and the feedback signal. I: action proportional to the integral of the actuating error D: action proportional to the derivative of the actuating error
11 Analog PI Controller
12 Foxboro 控制器之 PIDA Block 規劃 FW Flow Set FW Flow OUT LAG
13 PID Controller Ziegler-Nichols Stability Boundary Tuning 方式,係於 如右上圖之閉迴路 下,逐漸調高 Proportional Gain , 直至 K u 產生如右中 圖所示之震盪為止, 量測震盪週期 P u , 再依所示公式估算 最佳化 P 與 I 值。
14 負載響應 在控制參數已調整至最佳化下,該波形之過衝量 Ω (overshoot) 以及衰減比 δ (decay ratio) 皆應趨近於 0.2 。
15 PB 值最佳化調整 比例帶 Proportional Band (PB)= 100/P. PB 主要決定負載波形之減 幅 (damping) 以及對稱性, 左圖顯示在最佳化積分時間 下不同 PB 設定下之負載波 形: 較小之 PB(P opt /1.5) 會造成衰 減比 (decay ratio) 較大,亦即 減幅太輕 (light damping) 波 形,應調高其 PB 。 太大之 PB(P opt *1.5) 會造成第 一個波峰呈現非對稱波形並 需較長時間回到穩態,應調 低其 PB 。 圖、不同比例帶 PB 之負載響應波形
16 I 值最佳化調整 積分時間 I 值主要決定 負載波形之過衝量 (overshoot) , 左圖顯示在最佳化 PB 下不同 I 值設定下之負 載波形: 較小之 I(Iopt/1.5) 會造 成較大之過衝 (overshoot) ,應調高其 I 值。 較大之 I(Iopt*1.5) 會造 成沒有過衝,亦即 undershoot ,應調低其 I 值。 圖、不同積分時間 I 之負載響應波形
17 Pulse transfer function of a digital PID controller R(s) Plant C(s) E*(s) + - E(s) G* D (s) M*(s)
18 Discretize the m(t) (positional form)
19 Transient response of PID Controller R(s) C(s) E*(s) + - E(s) G* D (s) M*(s) R(z) C(z) + -
20 Realization of digital controllers and filters
21 Direct programming
22 Standard programming
23 Series programming
24 Parallel programming
25 Infinite vs Finite