Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 29 th September 2010

Slides:



Advertisements
Similar presentations
Towards a Spectroscopically Flexible Water Dimer Potential Energy Surface Ross E. A. Kelly, and Jonathan Tennyson Department of Physics & Astronomy University.
Advertisements

Progress Towards Theoretical Spectra of the Water Dimer Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy University.
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Contribution of water dimers in atmospheric absorption: methodology Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and Astronomy,
Preliminary Results for Water Dimer Spectroscopy Simulations Ross E. A. Kelly, Matt J. Barber, and Jonathan Tennyson Department of Physics and Astronomy.
1 Water vapour self-continuum: Recent update from Reading/RAL Semi-annual CAVIAR meeting UCL, London Igor Ptashnik, Keith Shine, Andrey Vigasin.
1 Water vapour self-continuum: Recent interpretation Igor Ptashnik, Keith Shine, Andrey Vigasin University of Reading (UK) Zuev Institute of Atmospheric.
1 Annual CAVIAR meeting, , Imperial College London Water vapour continuum absorption in near- and middle-IR: Recent investigations Department.
BBCRDS Measurements of Water Vapour: Inferred Upper Limits for Water Dimer Absorption in the 610 and 750 nm regions A.J.L. Shillings 1, S.M. Ball 2 and.
Vibrational averaging techniques to calculate the role of water dimers in atmospheric absorption Jonathan Tennyson, Matt J. Barber, Ross E. A. Kelly, Lorenzo.
Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 10 th February 2011
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London 13 th May 2010
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London December 2008.
Analysis of the Visible Absorption Spectrum of I 2 in Inert Solvents Using a Physical Model Joel Tellinghuisen Department of Chemistry Vanderbilt University.
The role of asymptotic states in H 3 + Jonathan Tennyson Department of Physics and Astronomy Royal Society University College London Jan 2006 HPCx supercomputer:
Lecture 6 nitrogen and ozone photochemistry Regions of Light Absorption of Solar Radiation.
METO 621 Lesson 6. Absorption by gaseous species Particles in the atmosphere are absorbers of radiation. Absorption is inherently a quantum process. A.
NABIL F. FARUK, HUI LI, JING YANG, ROBERT J. LE ROY & PIERRE-NICHOLAS ROY Simulation Studies of the Vibrational Dynamics of para- Hydrogen Clusters 1.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
A L INE L IST FOR H YDROGEN S ULPHIDE (H 2 S) Ala’a A. A. Azzam J. Tennyson and S. Yurchencko Department of Physics and Astronomy, University College London,
Chemistry 2 Lecture 10 Vibronic Spectroscopy. Learning outcomes from lecture 9 Excitations in the visible and ultraviolet correspond to excitations of.
Photoelectron Spectroscopy Lecture 3: vibrational/rotational structure –Vibrational selection rules –Franck-Condon Effect –Information on bonding –Ionization.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Theoretical work on the water monomer and dimer Matt Barber Jonathan Tennyson University College London September 2009.
Towards Theoretical Spectroscopy of the Water Dimer Ross E. A. Kelly, Matt J. Barber, and Jonathan Tennyson Department of Physics and Astronomy UCL Gerrit.
Simulating the spectrum of the water dimer in the far infrared and visible Ross E. A. Kelly, Matt J. Barber, Jonathan Tennyson Department of Physics and.
Rotational Spectra Simplest Case: Diatomic or Linear Polyatomic molecule Rigid Rotor Model: Two nuclei joined by a weightless rod J = Rotational quantum.
Theoretical work on the water monomer Matt Barber Jonathan Tennyson University College London
High-accuracy ab initio water line intensities Lorenzo Lodi University College London Department of Physics & Astronomy.
Introduction to Infrared Spectroscopy
IR EMISSION SPECTROSCOPY OF AMMONIA: LINELISTS AND ASSIGNMENTS. R. Hargreaves, P. F. Bernath Department of Chemistry, University of York, UK N. F. Zobov,
Vibrational and Rotational Spectroscopy
Einstein A coefficients for vibrational-rotational transitions of NO
Calculation of rovibrational H 3 + lines. New level of accuracy Slides of invited talk at Royal Society conference on H 3 + Oleg L. Polyansky 1,2 1 Institute.
Towards perfect water line intensities Lorenzo Lodi University College London, Dept of physics & Astronomy, London, UK.
Explore. Discover. Understand. AIR-BROADENED LINE WIDTHS AND SHIFTS IN THE ν 3 BAND OF 16 O 3 AT TEMPERATURES BETWEEN 160 AND 300 K M. A. H. SMITH and.
Revisit vibrational Spectroscopy
Modelling Metal Foam Formation in Helium Nanodroplets David McDonagh, The Centre for Interdisciplinary Science Project Supervisor: Professor Andrew Ellis,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Brookhaven Science Associates U.S. Department of Energy Hot band transitions in CH 2 Kaori Kobayashi *, Trevor Sears, Greg Hall Department of Chemistry.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
ROTATIONAL SPECTROSCOPY
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
Ohio State (Current and recent): Laura Dzugan Jason FordSamantha Horvath Meng Huang Zhou LinMelanie Marlett Bernice Opoku-AgyemanAndrew PetitBethany Wellen.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Manfred Birk, Georg Wagner Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Lorenzo Lodi, Jonathan Tennyson Department.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
The Complete, Temperature Resolved Spectrum Of Methyl Formate Between 214 and 265 GHz JAMES P. MCMILLAN, SARAH M. FORTMAN, CHRISTOPHER F. NEESE, and FRANK.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
D. Mondelain, A. Campargue, S. Kassi Laboratoire Interdisciplinaire de Physique Université Grenoble 1/CNRS The water vapor self-continuum in the 1.6 µm.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
A New Potential Energy Surface for N 2 O-He, and PIMC Simulations Probing Infrared Spectra and Superfluidity How precise need the PES and simulations be?
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
EXPERIMENTAL LINE LISTS OF HOT METHANE Image credit: Mark Garlick MONDAY 22 nd JUNE 2015 ROBERT J. HARGREAVES MICHAEL DULICK PETER F.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
CO2 dimer: Five intermolecular vibrations observed via infrared combination bands Jalal Norooz Oliaee, Mehdi Dehghany, Mojtaba Rezaei, Nasser Moazzen-Ahmadi.
69th annual international symposium on molecular spectroscopy
Jacob T. Stewart and Bradley M
The Atmosphere: Part 2: Radiative equilibrium
Ab initio calculations of highly excited NH3 levels
Stability of the HOOO Radical via Infrared Action Spectroscopy
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Presentation transcript:

Modelling Water Dimer Band Intensities and Spectra Matt Barber Jonathan Tennyson University College London 29 th September 2010

Monomer line list published “Short” list –Intensity cutoff at cm mol -1 – lines –Quantum numbers for all lines “Long” list –Intensities as low as cm mol -1 – lines –Energy levels for all lines An upper limit for water dimer absorption in the 750nm spectral region and a revised water line list, AJL Shillings et al., ACP, Sep

Band Intensities Calculated using the “forbidden” J=0-0 transition. Water dimer is too complicated for full ro- vibrational modelling. However, we can model vibrations of monomers within dimer and simulate additional rotational structure. Need to use 1992 version of DVR –Band models subsequently superseded –Calculate monomer bands from recent line lists

Dimer band intensities Calculate from (perturbed) monomer vibrational wavefunctions Requires Eckart embedding of axis frame Use HBB 12 D dipole moment surface (DMS) corrected with accurate monomer DMS CVR: L. Lodi et al, J Chem Phys., 128, (2008) Issues: PES used to generate monomer wavefunctions Cut through 12 D DMS used

Perturbing the dimer configuration Many possible configurations Transition intensities vary considerably from small changes in geometry Equilibrium may not be best choice Pick to strengthen donor bound stretch

Estimating transition frequencies Band centre from monomer DVR3D calculation Blue/red shift from calculation on perturbed PES Vibrational fine structure from dimer  dimer transitions Rotational structure simulated by overlaid Lorentzian

Partition function and equlibrium constant 800 vibrational energy levels J extrapolated up to 50 Dissociation energy? Equilibrium constant at room temperature: –Around 0.03 to 0.05 for bound states –Possibly up to 0.08 for metastable

Simulate spectra at “296 K” Assume equilibrium constant for typical atmospheric conditions Rotational band profile 30 cm -1 HWHM Vibrational fine structure mostly hidden beneath rotational structure But: Vibrational substructure still only for low T (8 J=0 states per symmetry) Possible contribution from metastable dimers

Simulate spectra at “16 K” Assume higher equilibrium constant Rotational band profile cm -1 –Damped by experiment Predictions give absolute intensities Vibrational substructure valid for low T Most dimers will be in the ground state Comparison against Helium droplet experiment Unfortunately, band where our model is weakest

Further Work Preliminary spectra for up to 10,000 cm -1 produced. –Band profile comparisons show some encouraging signs. –Effects of the sampling of the potential being investigated. Need all states up to dissociation for RT spectra –Only 8 states per symmetry here –It is a challenge for a much higher number of states Improved band origins