Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator.

Slides:



Advertisements
Similar presentations
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Advertisements

J-C. BRIENT (LLR) 1  Introduction with pictures  Prototype design and construction  R&D on the design of the full scale calorimeter CALICE - ECAL silicon-tungsten.
Adding electronic noise and pedestals to the CALICE simulation LCWS 19 – 23 rd April Catherine Fry (working with D Bowerman) Imperial College London.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
7 January 2005 MDI Workshop M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V.
LC Calorimeter Ideas and R&D Opportunities Ray Frey, U. Oregon Cornell, Apr 19, 2002 Physics implications The environment The “energy flow” concept Current.
R Frey 9/15/20031 Si/W ECal Update Outline Progress on silicon and tungsten Progress on readout electronics EGS4 v Geant4 Ray Frey M. Breidenbach, D. Freytag,
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
R Frey ESTB20111 Silicon-Tungsten Electromagnetic Calorimeter R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T.
NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002.
SiLC Front-End Electronics LPNHE Paris March 15 th 2004.
LCFI A Vertex Detector for the International Linear Collider  International Linear Collider (ILC): consensus that ILC will be next major particle accelerator.
1 Alternative Sampling Configurations – new study 20 GeV photons 30 x 5/7 X 0 20 x 5/7 X x 10/7 X 0 Total absobed energy Dep energy in Si Leakage.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
ICLC Paris R. Frey1 Silicon/Tungsten ECal for SiD – Status and Progress Ray Frey University of Oregon ICLC Paris, April 22, 2004 Overview (brief) Current.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.
CALICE SiW Electromagnetic Calorimeter Testbeam performance and results Roman Pöschl LAL Orsay IEEE – NSS&MCI '08 Dresden/Germany - October The.
SiD Cal R. Frey1 Some EGS Studies… Compare with Geant4  Questions of range/cutoff parameters EM Resolution understood? Moliere radius – readout gap relation.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
R Frey SiD at SLAC1 SiD ECal overview Physics (brief) Proposed technical solutions: silicon/tungsten  “traditional” Si sensors  MAPS Progress and Status.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
SiW ECAL Technological Prototype Test beam results Thibault Frisson (LAL, Orsay) on behalf of the CALICE collaboration.
SiD Concept – R&D Needs Andy White U. Texas at Arlington SiD Concept Meeting LCWS06 Bangalore, India March 11, 2006.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Silicon-Tungsten EM Calorimeter R&D
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 1 Paul Dauncey Imperial College London.
EUDET JRA3 ECAL and FEE C. de La Taille (LAL-Orsay) EUDET status meeting DESY 10 sep 2006.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
R Frey SiD ECal at ALCPG071 SiD ECal overview Physics requirements Proposed technical solutions: silicon/tungsten  “traditional” Si diodes  MAPS LOI.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 R&D Advances: SiW Calorimeter LCWS 2010 Beijing SiD Concept Meeting March 28, 2010 John Jaros for SiD SiW Group (thanks to Ray, Ryan, Mani, and Marco.
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
R Frey LCWS071 A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status Currently optimized for the SiD concept Baseline configuration:
Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003.
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
A Forward Calorimeter (FoCal) as upgrade for the ALICE experiment at CERN S. Muhuri a, M. Reicher b and T. Tsuji c a Variable Energy Cyclotron Centre,
SiW ECAL Marcel Reinhard LLR – École polytechnique LCWS ‘08, Chicago.
Durham TB R. Frey1 ECal R&D in N. America -- Test Beam Readiness/Plans Silicon-tungsten SLAC, Oregon, Brookhaven (SOB) Scintillator tiles – tungsten U.
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Sohail Amjad, Roman Pöschl LAL Orsay Guard ring studies for SiW Ecal of ILD CALICE Collaboration Meeting Cambridge/UK Sept
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
Performance of the PHENIX NCC Prototype Michael Merkin Skobeltyn Institute of Nuclear Physics Moscow State University.
Wide Dynamic range readout preamplifier for Silicon Strip Sensor
SiD Calorimeter R&D Collaboration
A SiW EM Calorimeter for the Silicon Detector
detector development readout electronics interconnects bump bonding
Calorimetry for a CLIC experiment
prototype PCB for on detector chip integration
LCDRD ECal R&D Physics goals drive the design
SiD Electronic Concepts
A Silicon-Tungsten ECal for the SiD Concept
BESIII EMC electronics
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Signal processing for High Granularity Calorimeter
Michele Faucci Giannelli
LC Calorimeter Testbeam Requirements
Possible types of Si-sensor: SILICON CALORIMETRY FOR A LINEAR COLLIDER G.Bashindzhagyan, Il Park August Silicon sensor.
The MPPC Study for the GLD Calorimeter Readout
Some EGS Studies… Compare with Geant4 Questions of range/cutoff
Presentation transcript:

Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center R. Frey U. Oregon SD Detector

SD designed for excellent energy flow performance – with well- understood and somewhat constrained cost (see Snowmass Orange Book for details) Si/W ECal –5mm transverse segmentation –[ 2.5 mm W (0.7 X 0 ), 0.4 mm Si ] x30 –R m = 9mm (1 + gap(mm)/2.5) → Keep gaps small ! In this talk: Some architecture and readout issues Dynamic range and some electronics issues Next steps

Si/W Readout-SD ~50 M pixels, 5x5 mm 2 Do NOT scale electronics by this number 1 chip per wafer 1 chip per ~1 m 2 of wafers

Noise GLAST Si electronics: 20e/pF + 200e → ≈2000e (fine) Cooling NLC duty cycle is ~10 -4 → Assume power duty cycle GLAST elec. power: 2 mW/chan. For standard W alloy, can cool one edge of W plate → ≈ 2 o rise (fine) Dynamic Range MIPs 500 GeV Bhabha electrons EGS study: ≈ 2000 MIPs Maintain low-end resolution → 3 ranges of 12 bits

Shaper G2G2 G1G1 MUXMUX 12 bit A/D G3G3 Charge amp. with ~ 10pf feedback cap bits

Next… Further design work Prototypes: –Silicon wafer with 5mm pixels and metallizations for wafer readout chip –Wafer readout chip The other readout chips A one wafer wide, full depth module for test beam