CONFINEMENT WITHOUT A CENTER: THE EXCEPTIONAL GAUGE GROUP G(2) M I C H E L E P E P E U n i v e r s i t y o f B e r n (S w i t z e r l a n d)

Slides:



Advertisements
Similar presentations
A method of finding the critical point in finite density QCD
Advertisements

On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
The Many Faces of Quantum Fields, Lorentz Center, Leiden, April 10-13, Confinement and screening in SU(N) and G(2) gauge theories Štefan.
Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
J. Hošek, in “Strong Coupling Gauge Theories in LHC Era”, World Scientific 2011 (arXiv: ) P. Beneš, J. Hošek, A. Smetana, arXiv: A.
Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions WHOT-QCD Collaboration: S.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
3rd International Workshop On High Energy Physics In The LHC Era.
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
Introduction to the Standard Model
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Chiral freedom and the scale of weak interactions.
the equation of state of cold quark gluon plasmas
Chiral freedom and the scale of weak interactions.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Large N c QCD Towards a Holographic Dual of David Mateos Perimeter Institute ECT, Trento, July 2004.
Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.
Free Quarks and Antiquarks versus Hadronic Matter Xiao-Ming Xu Collaborator: Ru Peng.
Chiral freedom and the scale of weak interactions.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Kenji Morita 21 May 2011Three Days on Quarkyonic Poland1 Probing deconfinement in a chiral effective model with Polyakov loop from imaginary.
Exotic states at boundary of quark matter Mannque Rho Saclay (HIM, September 2006)
Introduction to Gauge Higgs unification with a graded Lie algebra Academia Sinica, Taiwan Jubin Park (NTHU)  Collaboration with Prof. We-Fu.
Color confinement mechanism and the type of the QCD vacuum Tsuneo Suzuki (Kanazawa Univ.) Collaborators: K.Ishiguro, Y.Mori, Y.Nakamura, T.Sekido ( M.Polikarpov,
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Effective Polyakov line actions from the relative weights method Jeff Greensite and Kurt Langfeld Lattice 2013 Mainz, Germany July 2013 Lattice 2013 Mainz,
1 Heavy quark Potentials in Full QCD Lattice Simulations at Finite Temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
Thermal phase transition of color superconductivity with Ginzburg-Landau effective action on the lattice M. Ohtani ( RIKEN ) with S. Digal (Univ. of Tokyo)
Guido Cossu 高エネルギ加速器研究機構 Lattice Hosotani mechanism on the lattice o Introduction o EW symmetry breaking mechanisms o Hosotani mechanism.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/ , PRD70 hep-th/ , PRD71 hep-th/ D. Epple, C. Feuchter,
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
1 Topological Quantum Phenomena and Gauge Theories Kyoto University, YITP, Masatoshi SATO.
Imaginary Chemical potential and Determination of QCD phase diagram
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
5d truncation ignoring the 5-sphere (SO(6) gauge symmetry) There are 42 scalars - a 20 of SO(6) - a 10 and 10 of SO(6) - scalar dilaton-axion, singlets.
Temperature dependence of η/s in the “s”-QGP “s”-QGP: transition region near T d ; d=deconfinement. Here: “s” semi, not strong. Matrix model for semi-QGP.
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Why Extra Dimensions on the Lattice? Philippe de Forcrand ETH Zurich & CERN Extra Dimensions on the Lattice, Osaka, March 2013.
Center-Symmetric 1/N Expansion Phys.Rev.D71, (hep-th/ v2) Outline : A center-symmetric background at finite temperature ‘t Hooft diagrams and.
WHOT-QCD Collaboration Yu Maezawa (RIKEN) in collaboration with S. Aoki, K. Kanaya, N. Ishii, N. Ukita, T. Umeda (Univ. of Tsukuba) T. Hatsuda (Univ. of.
1 CONFINING INTERQUARK POTENTIALS FROM NON ABELIAN GAUGE THEORIES COUPLED TO DILATON Mohamed CHABAB LPHEA, FSSM Cadi- Ayyad University Marrakech, Morocco.
Holographic QCD in the medium
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
Baryon Chemical Potential in AdS/CFT Shin Nakamura 中村 真 Hanyang Univ. and CQUeST (韓国・漢陽大学 ) Ref. S.N.-Seo-Sin-Yogendran, hep-th/ ( Kobayashi-Mateos-Matsuura-Myers,
Strings, Gravity and the Large N Limit of Gauge Theories Juan Maldacena Institute for Advanced Study Princeton, New Jersey.
Phase Transitions in QCD Eduardo S. Fraga Instituto de Física Universidade Federal do Rio de Janeiro.
A nonperturbative definition of N=4 Super Yang-Mills by the plane wave matrix model Shinji Shimasaki (Osaka U.) In collaboration with T. Ishii (Osaka U.),
1 Heavy quark potential in full QCD lattice simulations at finite temperature Yuu Maezawa (The Univ. of Tokyo) Tsukuba-Tokyo collaboration Univ. of Tsukuba.
Seiberg Duality James Barnard University of Durham.
Dynamical Instability of Holographic QCD at Finite Density Shoichi Kawamoto 23 April 2010 at National Taiwan University Based on arXiv: in collaboration.
The QCD phase diagram and fluctuations Deconfinement in the SU(N) pure gauge theory and Polyakov loop fluctuations Polyakov loop fluctuations in the presence.
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
Study of the structure of the QCD vacuum
Gauge/String Duality and Integrable Systems
Lattice QCD at finite temperature Péter Petreczky
Nc=2 lattice gauge theories with
Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen
Ziqiang Zhang Huazhong Normal University
Masses by gauge flavor dynamics (1101
Roberge-Weiss transition endpoints with Wilson and improved KS quarks
with Erich Poppitz (u of Toronto)
Holographic Heavy- Light mesons from non- Abelian DBI
Presentation transcript:

CONFINEMENT WITHOUT A CENTER: THE EXCEPTIONAL GAUGE GROUP G(2) M I C H E L E P E P E U n i v e r s i t y o f B e r n (S w i t z e r l a n d)

O U T L I N E Overview of the deconfinement transition in YM theory with a general gauge group and motivations The group G(2): generalities G(2) gauge theories Numerical results Conclusions YM YM + Higgs

What is the role of the center of the gauge group in the deconfinement transition of Yang-Mills theory? SU(N)  (N) gauge theoryscalar theory Svetitsky-Yaffe conjecture complicated, local, effective action for the Polyakov loop order of the deconfinement phase transition potential mechanism of confinement in YM theory SO(N)  (2)  (4)  (2)   (2) N odd N=4k+2 N=4k Spin(N) K.Holland, M.P., U.J. Wiese Nucl.Phys.B694 (2004) 35 M.P., Nucl.Phys.B PS 141 (2005) 238 E(7) E(6) exceptional groups G(2), F(4), E(8)  (2)  (3) trivial center Sp(N)  (2) Otah and Wingate Lucini, Wenger, and Teper Greensite and Lautrup Tomboulis Datta, Gavai et al. De Forcrand and Jahn Burgio, Muller-Preussker et al.

Sp(N): increase the size of the group keeping the center  (2) fixed generalization of SU(2)=Sp(1); pseudo-real representation (3+1)-d: only Sp(1)=SU(2) YM theory has a 2 nd order deconfinement p.t. What about confinement in YM theory with a gauge group with trivial center? center: no information about the order of the deconfinement transition conjecture confined phasedeconfined phase (colorless states)(gluon plasma) size of the group determines the order of the p.t. Sp(2) 10 Sp(3) 21 K.Holland, P. Minkowski, M.P., U.J. Wiese Nucl.Phys.B668 (2003) 207 K.Holland, M.P., U.J. Wiese Nucl.Phys.B694 (2004) 35

Potential relevance of topological objects in the mechanism of confinement in non-Abelian gauge theories. Possible candidates: ’t Hooft flux vortices.  1 ( G / center(G) )  {  } Gauge theories without ’t Hooft flux vortices: study how confinement shows up. G(2) SU(3) What about confinement in YM theory with a gauge group with trivial center? G(2): simplest group such that  1 ( G(2) / {  } ) = {  }

G(2): generalities G(2)  SO(7) [ rank = 3; generators = 21] det  = 1 ;  ab =  a´b´  a a´  b b´ T a b c = T a´ b´ c´  a a´  b b´  c c´ ; T is antisymmetric 14 generators; real representations (fundamental 7  7) G(2)-"quarks" ~ G(2)-"antiquarks" l a a *  a = G(2)  SU(3) in a real rep. G(2) has rank 2 a = Gell-Mann matrices SU(3) {7} {3}  {3}  {1}

14 generators: adjoint representation is {14} {14} {8}  {3}  {3} SU(3) 14 G(2)- " gluons " 8 gluons + "vector quark " + "vector antiquark " SU(3) G(2): its own universal covering group rank 2 G(2)  SU(3) center(G(2)) = {  }  1 ( G(2) / {  } ) = {  }

string breaking without dynamical G(2)-"quark" {7}  {14}  {14}  {14} = {1}  … Interesting homotopy groups "3-ality" : all reps mix together in the tensor product decomp.  3 ( G(2) ) =   2 ( G(2)/U(1) 2 ) =     1 ( G(2) / {  } ) = {  } instantons monopoles no ’t Hooft flux vortices like SU(3) unlike SU(3)

G(2) Yang-Mills Pure gauge: 14 G(2)-"gluons" 6 G(2)-"gluons" explicitly break  (3)  center(G(2)) = {  }  quarks for SU(3) G(2)-YM is asymptotically free at low energies: - confinement - string breaking:  =0 (QCD) G(2)-"laboratory": confinement similar to QCD without complications related to fermions. Wilson loop perimeter law {14} {8}  {3}  {3} SU(3) V(r) r ~ 6 G(2)-"gluons"

Fredenhagen-Marcu order parameter: confining/Higgs or Coulomb phase  (R,T) = 1/2  0 Confining/Higgs = 0 Coulomb In strong coupling we are in the confining/Higgs phase R,T  = (U  x T abc ) U  xy (U  y T def ) ab cdef R R T/2 T no counterpart when the gauge group has a non-trivial center U =U =

Finite temperature: different behaviour than SU(3)-YM  (3) unbroken  (3) broken  P   e -F q /T  P  = 0,  0  P   0,  = 0 In SU(3)-YM there is a global symmetry that breaks down. In G(2)-YM no symmetry  no 2 nd order phase transition 1 st order or crossover ? Conjecture: Sp(2) has 10 generators and it has 1 st deconfinement p.t. We expect G(2) YM to have also a 1 st deconfinement p.t. dynamical issue: numerical simulations P z P  P 0 P * r   P  2 r  

 Tr U   /7  24 3  6

High temperature effective potential 1-loop expansion of the effective potential for the Polyakov loop ~ 11 G(2) P (  1,  2 ) = ( P, P *,1) 22 11 22 SU(3) P = diag(e i(  1 +  2 ), e i(-  1 +  2 ), e -2i  2 ) N. Weiss, Phys. Rev. D24 (1981) 475

G(2) Yang-Mills + Higgs {7} Higgs {7}: G(2) SU(3)    = v 6 G(2)-"gluons" pick up a mass M G  v For M G   QCD the 6 massive G(2)-"gluons" participate in the dynamics; for M G   QCD they decouple  SU(3) Higgs {7}: handle for G(2) SU(3) confinement G(2) SU(3). 6 massive G(2)-"gluons" are {3} and {3}  quarks  string breaking {14} {8}  {3}  {3} SU(3) V(r) rr MGMG  0  = 0

S HYM = S YM -    + (x) U  (x)  (x+  ) x,  ^ 1/(7g 2 )  N t =6 SU(3)-YM G(2)-YM

 = 1.3

 SU(3)-YM G(2)-YM N t =6 1/(7g 2 )

 = 1.3  = 1.5

 SU(3)-YM G(2)-YM N t =6 1/(7g 2 )

 = 1.3  = 1.5  = 2.5  = 1.5  = 2.5

Conclusions Confinement is difficult problem: not only SU(N) but all Lie groups! Conjecture: the size of the group determines the order of the deconfinement p.t. The center is relevant only if the transition is 2 nd order: G(2) 14 YM 1 st order (3+1)-d only Sp(1)=SU(2) 3 YM has a 2 nd order deconfinement p.t. SU(3) 8 YM weak 1 st order, no known universality class available YM with all other gauge groups have 1 st order (2+1)-d SU(2) 3, SU(3) 8, Sp(2) 10 YM has a 2 nd order deconfinement p.t., SU(4) 15 YM: weak 1 st or 2 nd ?, G(2) 14 YM: not known YM with all other gauge groups have 1 st order Outlook Finite temperature behaviour of G(2) YM in (2+1)-d Static quark-quark potential and string breaking Study of the Fredenhagen-Marcu order parameter