Principles of Fluorescence Spectroscopy

Slides:



Advertisements
Similar presentations
Big Question: We can see rafts in Model Membranes (GUVs or Supported Lipid Bilayers, LM), but how to study in cells? Do rafts really exist in cells? Are.
Advertisements

XMUGXQ PFS0401 Principles of Fluorescence Spectroscopy Chemistry Department XMU.
Principle of fluorescence
Three common mechanisms for bimolecular quenching
Chapter 7 The End Energy Transfer Equilibrium Equilibrium between singlet states expected to be quite rare except when linked by a spacer Intermolecular.
Some structures Dansyl chloride 1,5-I-AEDANS Fluorescein isothiocyante ANS Ethidium bromide 5-[2-[(2-iodoacetyl)amino]ethylamino] naphthalene-1-sulfonic.
Special Applications in Fluorescence Spectroscopy Miklós Nyitrai; 2007 March 14.
Lecture 3 Kinetics of electronically excited states
Methods: Fluorescence Biochemistry 4000 Dr. Ute Kothe.
Phosphorescence Quantum Yield Skoog, Hollar, Nieman, Principles of Instrumental Analysis, Saunders College Publishing, Philadelphia,
Molecular Luminescence
第十四章 糖类化合物 学习要求: 1. 掌握单糖的结构 - 开链式及哈沃斯式的书写 2. 掌握单糖的结构特点及化学性质 3. 了解二糖、多糖的结构特点及一般性质.
第十二章 杂环化合物 学习要求: 1. 掌握几种常见杂环化合物命名 2. 掌握吡咯、吡啶的结构 3. 掌握吡咯、吡啶的化学性质 4. 了解几种常见杂环化合物以及生物碱的一般性质.
XMUGXQ PFS0601 Principles of Fluorescence Spectroscopy Chemistry Department XMU.
Fluorescence Resonance Energy Transfer (FRET) Donor Fluorescence Acceptor Absorption INTENSITY WAVELENGTH (nm)
Molecular Luminescence Secil Koseoglu 11/13/09. Aequorin: Guiding Star for Scientists.
第七章 能量代谢和体温 第一节 能量代谢 能量代谢 ( energy metabolism ) 物质代谢过程中所伴随着的能量的贮存、 释放、和利用 物质代谢过程中所伴随着的能量的贮存、 释放、和利用 一、食物的能量转化 (一)三磷酸腺苷是体内能量转化和利用的 关键物质 三磷酸腺苷磷酸肌酸.
XMUGXQ PFS0801 Principles of Fluorescence Spectroscopy Chemistry Department XMU.
XMUGXQ PFS03-01 Principles of Fluorescence Spectroscopy Chemistry Department XMU.
聚合物在生物高分子分离中的应用 王延梅 中国科学技术大学高分子科学与工程系 Tel
第十三章 脂类化合物 学习要求: 1. 掌握油脂、蜡、磷脂化合物的结构 2. 掌握油脂的性质及皂化值、碘值和酸值的概念.
Measurement of Fluorescent Lifetimes: Time-Domain Time-Correlated Single Photon Counting (TCSPC) vs. Stroboscopic (Boxcar) Techniques.
11-13 电极电势 电池电动势 ( 为各类界面电势差之和 ) E. 平衡时电化学势  i sol + z i e 0  sol =  i M + z i e 0  M.
第九章 消除反应 (Elimination Reactions) 一. 反应的类型 ( ) 二. 反应机理 1. E1 机理 ( ) 2. 单分子共轭碱消除 (E1 CB) 机理 ( ) 3. E2 机理 ( ) 三. 影响反应机理的因素 ( ) 1. 底物 2. 碱 3. 离去基团 4. 溶剂.
Chapter 9 Electron transport and oxidative phosphorylation.
实验八 — 高分子材料的老化性 能测定. 南京理工大学化工学院 一、 实验目的  1. 了解橡胶的老化机理  2. 掌握鼓风老化试验箱的使用方法  3. 测定老化前后的力学性能.
关于氨基酸的 定量分析 03 化学 3 班 杨曦 氨基酸的分析方法 化学分析法 —— 甲醛滴定法 甲醛滴定法用于氨基氮的 测定, 可以测出样品中总氨基酸 的含量, 其原理是在中性或弱碱 性水溶液中, 氨基酸的 α— 氨基与醛类反应生成 Schiff 碱 :α— 氨基酸与甲醛反应生成亚.
第九章 核糖体 Robinson & Brown ( 1953 )发现于植物细胞, Palacle ( 1955 )发现于动物细胞, Roberts ( 1958 )建 议命名为核糖核蛋白体( ribosome ),简称核糖体。核糖 体是所有类型的细胞内合成蛋白质的工厂,在一个旺盛生 长的细菌中,大约有.
第六章 卤代烃 学习要求: 1. 熟练掌握一元卤代烃( RCl,RBr) 的化学性质 2. 掌握卤代烃的制法 3. 掌握不同类型卤代烃反应活性及鉴别方法 4. 理解亲核取代及消除反应的历程.
第九章其他特种加工 1 化学加工( Chemical Machining , CHM ),利 用酸、碱、盐等化学溶液 对金属产生化学反应,使 金属腐蚀溶解,改变工件 尺寸和形状的加工方法。 应用:化学铣削,光化学腐 蚀;化学抛光和化学镀膜 等。
Molecular Luminescence
XMUPFS01-ITF02 Principles of Fluorescence Spectroscopy Chemistry Department XMU.
FRET and Other Energy Transfers Patrick Bender. Presentation Overview Concepts of Fluorescence FRAP Fluorescence Quenching FRET Phosphorescence.
Wickstrom PR 613 Fluorescence. Source Dispersing Sample Detector Computer Lens Dispersing Instrumentation.
Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland 2012/ lecture 3 "Molecular Photochemistry - how to study mechanisms of photochemical.
(D) Crosslinking Interacting proteins can be identified by crosslinking. A labeled crosslinker is added to protein X in vitro and the cell lysate is added.
Photochemistry Reactions involving photons. (Radiation-induced chemical processes: chemical transformations induced by high energy photons. Radiochemistry.
THE EFFECT OF POLYELECTROLYTES ON THE AGGREGATION OF CYANINE DYES IN LANGMUIR-BLODGETT FILMS AND IN AQUEOUS SOLUTIONS; SOME KINETIC ASPECTS OF J-AGGREGATES.
IPC Friedrich-Schiller-Universität Jena 1 6. Fluorescence Spectroscopy.
Lecture 7: Fluorescence: Polarization and FRET Bioc 5085 March 31, 2014.
Lecture 5 Intermolecular electronic energy transfer
Fluorescence: Quenching and Lifetimes
Chapter 15 Molecular Luminescence Spectrometry Three types of Luminescence methods are: (i) molecular fluorescence (ii) phosphorescence (iii) chemiluminescence.
动物的激素调节 大庆石油高级中学 怀颖. 一、动物的激素调节: 复习:体液的组成? 体液调节概念: 象激素、 CO2 、 H+ 、乳酸和 K+ 等通过体 液传送,对人和对动物的生理活动所进行的 调节称为体液调节,而激素相对于这些化学 物质的调节最为重要。
Scanning excitation and emission spectra I Wavelength (nm) )Scan excitation with emission set at 380 nm -λ ex,max = 280 nm 2) Scan emission.
Chapter 3. Light emitting diod
Physical Fluorescence Excitation Dr Maria Kiskowski Byrne, Department of Mathematics, Vanderbilt University. Dr Anne Kenworthy, Depts. of Molecular Physiology.
23.7 Kinetics of photochemical reactions
Ligand binding Cyanide binding to the respiratory enzyme- cytochrome c oxidase What we know, cyanide is a potent poison of respiration CN inhibition to.
Mechanisms of enzyme inhibition Competitive inhibition: the inhibitor (I) binds only to the active site. EI ↔ E + I Non-competitive inhibition: binds to.
Förster Resonance Energy Transfer (FRET)
Fluorescence spectroscopy, Einstein’s coefficients Consider a molecule with two energy levels S a and S b The rate of transition.
八. 真核生物的转录 ㈠ 特点 ① 转录单元为单顺反子( single cistron ),每 个蛋白质基因都有自身的启动子,从而造成在功能 上相关而又独立的基因之间具有更复杂的调控系统。 ② RNA 聚合酶的高度分工,由 3 种不同的酶催化转 录不同的 RNA 。 ③ 需要基本转录因子与转录调控因子的参与,这.
1 Molecular Luminescence Spectroscopy Lecture 29.
IPC Friedrich-Schiller-Universität Jena 1 Radiationless excitation energy transfer requires interaction between donor and acceptor  Emission spectrum.
第九章 核糖体 Robinson & Brown ( 1953 )发现于植物 细胞。 Palacle ( 1955 )发现于动物细胞。 Roberts ( 1958 )建议命名为核糖核蛋白 ( ribosome ),简称核糖体。 核糖体是细胞内合成蛋白质的工厂,在 一个旺盛生长的细菌中,大约有
第十二章 维生素与辅酶 维生素是机体维持正常生命活动所必不可少的 一类有机物质。 维生素一般习惯分为脂溶性和水溶性两大类。 其中脂溶性维生素在体内可直接参与代谢的调 节作用,而水溶性维生素是通过转变成辅酶对 代谢起调节作用。 含量少,人体合成不足,需食物提供 缺乏会导致病变, 过多? 结构上无共性.
第二章 表面活性剂 Chapter2 Surfactant 第三节 磺化和硫酸化与 阴离子表面活性剂生产技术
Fluorescence Spectroscopy
《生物光子学》 1 第二章:生物学基础 主讲教师: 钱 骏 副教授 Tel: / / Homepage :
Molecular Fluorescence Spectroscopy
课件共享 课外作业 —— 第二章( ) 第一组:氨氧化作用、氨氧化细菌、氨氧化古菌 第二组:硫氧化作用、硫氧化细菌 第三组:甲烷厌氧氧化作用,甲烷厌氧氧化古菌 第四组:碱性磷酸酶、富营养化作用 第五组:土壤生物修复.
Midterm 2 (53 students wrote the exam)
Three common mechanisms for bimolecular quenching
Biophysical Tools '04 - Fluorescence
26.11 Kinetics of photochemical reactions
Quenching The presence of a quencher, Q, opens an additional channel for deactivation of S* S* + Q → S + Q vQ = kQ[Q][S*] Now the steady-state.
Förster Resonance Energy Transfer (FRET)
Three common mechanisms for bimolecular quenching
23.7 Kinetics of photochemical reactions
Presentation transcript:

Principles of Fluorescence Spectroscopy XMUGXQ PFS0501 Principles of Fluorescence Spectroscopy Chemistry Department XMU 20040300

XMUGXQ PFS0501 Chapter Five Quenching of Fluorescence 20040300

Quenching of fluorescence XMUGXQ PFS0501 Quenching of fluorescence 5.1 Introduction 5.2 Stern-Volmer equation 5.3 Modified Stern-Volmer equation 5.4 factors influencing quenching 5.5 quenching mechanisms 5.6 Application 20040300

5.1 introduction Fluorescence Quenching XMUGXQ PFS0501 5.1 introduction Fluorescence Quenching Any processes decreasing the fluorescence intensity Excited-state reactions Molecular rearrangements Ground-state complex formation Collision Quencher Any species causing the decrease in the fluorescence General quencher Specific quencher 20040300

Dynamic quenching and static quenching XMUGXQ PFS0501 Dynamic quenching and static quenching Dynamic quenching Collision quenching relaxation (10-12 s) S0 S1 hvA hvF  knr Q kq[Q] 20040300

Dynamic quenching Diffusion control Effected by viscosity of solvent XMUGXQ PFS0501 Dynamic quenching Diffusion control Effected by viscosity of solvent In general, without permanent change in the fluorophore No changes in the absorption spectrum Decreasing the lifetime Intensify with temperature increasing Change into 20040300

Static quenching MQ* → MQ +  MQ* → MQ + hvF2 relaxation (10-12 s) S0 XMUGXQ PFS0501 MQ* → MQ +  MQ* → MQ + hvF2 relaxation (10-12 s) S0 S1 hvA2 hvF2  knr MQ relaxation (10-12 s) S0 S1 hvA1 hvF1  knr M 20040300

Static quenching Forming a new species XMUGXQ PFS0501 Static quenching Forming a new species Changing the absorption spectrum How about excitation spectrum? Change? Or not change? Depend on MQ emitting or not No change in the lifetime How about the effect of temperature? Depend on the thermodynamic properties of M and MQ 20040300

Quenchers oxygen Causing ISC halogens Aromatic and aliphatic amines XMUGXQ PFS0501 Quenchers oxygen Causing ISC halogens Aromatic and aliphatic amines Forming excited charge-transfer complexes Carboxyl groups Nitroxides Nitromethane and nitro compounds Heavy atoms more…… 20040300

5.2 Stern-Volmer eqution F0 and F XMUGXQ PFS0501 5.2 Stern-Volmer eqution F0 and F Fluorescence intensities in the absence and presence of quencher, respectively [Q] Concentration of quencher KSV Stern-Volmer quenching constant, given by kq0 KD dynamic quenching KS static quenching 20040300

Dynamic quenching For steady-state measurement XMUGXQ PFS0501 Dynamic quenching For steady-state measurement In the presence of quencher In the absence of quencher relaxation (10-12 s) S0 S1 hvA hvF  knr Q kq[Q] 20040300

For quantitative measurement XMUGXQ PFS0501 Dynamic quenching For quantitative measurement Stern-Volmer equation Because Stern-Volmer equation 20040300

Dynamic quenching 0 Lifetime in the absence of quencher kq XMUGXQ PFS0501 Dynamic quenching 0 Lifetime in the absence of quencher kq Bimolecular quenching constant Typically, 11010 mol-1 L s-1 kq = f(Q)k0 Quenching efficiency f(Q) The diffusion-controlled bimolecular rate constant k0 R Molecular radius (RF+RQ) collision radius D Diffusion coefficients N Avogadro’s number 20040300

Example Oxygen quenches The fluorescence of tryptophan XMUGXQ PFS0501 Example Oxygen quenches The fluorescence of tryptophan 25°C, O2, Dq = 2.5 10-5 cm2/s; tryptophan, DF = 0.66 10-5 cm2/s The collision radius R = ( RF + Rq ) = 5 Å k0 =1.2  1010 mol-1 L s-1 Thus Measured KD = 32.5 mol-1 L How to measure? Given  = 2.7 ns, Thus kq =1.2  1010 mol-1 L s-1 f(Q) = kq/k0 = 1 20040300

The effect of lifetime on quenching XMUGXQ PFS0501 The effect of lifetime on quenching Using oxygen as the quencher According to Stern-Volmer equation KD =kq0 Typically, kq = 11010 mol-1 L s-1 Typical fluorescence lifetime 0 = 10-8 s Thus, KD = 102 mol-1 L When Typical phosphorescence lifetime 0 = 10-3 s Thus, KD = 107 mol-1 L When What do these calculations suggest? 20040300

Static quenching May or may not fluoresce According to F = Kc Thus XMUGXQ PFS0501 Static quenching May or may not fluoresce According to F = Kc Thus 20040300

Stern-Volmer constant XMUGXQ PFS0501 Stern-Volmer constant KD = kq0 Related with lifetime, controlled by diffusion Increasing with temperature increasing T↑ 1.0 [Q] F0/F KS Formation constant Endothermal reaction Exothermal reaction T↑ 1.0 [Q] F0/F T↑ 1.0 [Q] F0/F 20040300

Combined dynamic and static quenching XMUGXQ PFS0501 Combined dynamic and static quenching Violation of Stern-Volmer equation 1.0 [Q] F0/F Suggest the combination of dynamic and static quenching 20040300

Correction to Stern-Volmer equation XMUGXQ PFS0501 Correction to Stern-Volmer equation the fraction of fluorescence, due to static quenching F0 F FQ the fraction of fluorescence, due to dynamic quenching hv F* FQ F* Q* 20040300

Correction to Stern-Volmer equation XMUGXQ PFS0501 Correction to Stern-Volmer equation F* FQ F F0 hv Q* fs fS.fD 20040300

Correction to Stern-Volmer equation XMUGXQ PFS0501 Correction to Stern-Volmer equation Kapp apparent Stern-Volmer constant 20040300

Correction to Stern-Volmer equation XMUGXQ PFS0501 Correction to Stern-Volmer equation [Q] KDKS KD+KS 20040300

Modified Stern-Volmer equation in interpreting “sphere of action” XMUGXQ PFS0501 Modified Stern-Volmer equation in interpreting “sphere of action” Where  is the volume of the sphere. The radius of the sphere is slightly larger than the sum of the radii of the fluorophore and the quencher. There exists a high probability that quenching will occur before these molecules diffuse apart. 20040300

Example 1 0/ x F0/F Oxygen quenching of tryptophan XMUGXQ PFS0501 20040300

XMUGXQ PFS0501 Example 2 F0/F F0/FQ ■ 0 /  Acrylamide(丙烯酰胺)quenching of N-acetyl-L-tryptophan-amide(N-乙酰-L-色氨酸酰胺) 20040300

XMUGXQ PFS0501 Example 3 From JRL. P.245 Acrylamide quenching of dihydroequilenin (DHE,二氢马萘雌甾酮) in buffer containing 10% sucrose(蔗糖) at 11°C 20040300

XMUGXQ PFS0501 Example 4 10-methylacridinium chloride quenching of guanosine-5’-monophosphate (鸟嘌呤核苷-5‘- 单磷酸) 20040300

XMUGXQ PFS0501 Example 4 20040300

5.4 factors influencing quenching XMUGXQ PFS0501 5.4 factors influencing quenching Steric effect Example 1 20040300

The ethidium bromide-DNA complex XMUGXQ PFS0501 The ethidium bromide-DNA complex Oxygen quenching of ethdium bromide fluorescence Why smaller than 11010? 20040300

XMUGXQ PFS0501 Example 2 20040300

XMUGXQ PFS0501 Charge effect I O2 F 20040300

Example 1 Copolymer 1 1% tryptophan + 99% glutamic acid XMUGXQ PFS0501 Example 1 Copolymer 1 1% tryptophan + 99% glutamic acid Copolymer 2 3% tryptophan + 97% lysine At neutral pH glutamic acid nagatively charged Lysine positive charged What happens to the fluorescence of tryptophan in the presence of oxygen and iodide, respectively? 20040300

XMUGXQ PFS0501 Example 1 20040300

XMUGXQ PFS0501 Example 2 氯化十二烷基三甲铵 十二烷基硫酸钠 20040300

Micro-environment Fluorescence quenching of trypsinogen 胰蛋白酶原荧光猝灭 XMUGXQ PFS0501 Micro-environment Fluorescence quenching of trypsinogen 胰蛋白酶原荧光猝灭 20040300

Different in micro-environment XMUGXQ PFS0501 Different in micro-environment Downward-curving Stern-Volmer plot Partial quenching 1.0 [Q] F0/F Fin Fex I In the absence of quencher F0 = Fin,0 + Fex,0 20040300

In the presence of quencher XMUGXQ PFS0501 Modified Stern-Volmer equation in interpreting the difference in micro-environment In the presence of quencher Total fluorescence 20040300

Deriving modified equation XMUGXQ PFS0501 Deriving modified equation 20040300

Deriving modified equation XMUGXQ PFS0501 Deriving modified equation Let Then Modified Stern-Volmer equation 20040300

Deriving modified equation XMUGXQ PFS0501 Deriving modified equation 1 /(KDfex) 1 / fex 1/[Q] 20040300

Iodide quenching of tryptophan fluorescence in lysozyme(溶菌酶) XMUGXQ PFS0501 Example Native protein Iodide quenching of tryptophan fluorescence in lysozyme(溶菌酶) Denatured protein Native protein 1/fex = 1.5, fex = 0.66 Denatured protein 1/fex = 1.0, fex = 1.0 20040300

XMUGXQ PFS0501 example 20040300

Localization of membrane-bound fluorophores XMUGXQ PFS0501 Localization of membrane-bound fluorophores 20040300

Localization of membrane-bound fluorophores XMUGXQ PFS0501 Localization of membrane-bound fluorophores 20040300

5.5 quenching mechanisms 5.5.1 Due to energy transfer XMUGXQ PFS0501 5.5 quenching mechanisms 5.5.1 Due to energy transfer Nonradiative energy transfer, due to dipole-dipole interaction of donor and acceptor D donor A acceptor Rate of energy transfer depends Overlap of spectra Relative orientation Distance between A and D 20040300

Principle of energy Rate of energy transfer D quantum yield of D XMUGXQ PFS0501 Principle of energy Rate of energy transfer D quantum yield of D D lifetime of D r distance between A and D n refrcative index N Avogadro’s number k orientation factor J overlap integral 20040300

The extinction coefficient of A at  XMUGXQ PFS0501 Overlap integral The corrected fluorescence intensity of D in -d, the total intensity normalized to unity The extinction coefficient of A at  The unit is (mol / L)-1 cm3 20040300

XMUGXQ PFS0501 Orientation factor randomize by rotational diffusion prior to energy transfer k = 2/3 20040300

Förster distance R0 The distance between A and D when XMUGXQ PFS0501 Förster distance R0 The distance between A and D when relaxation (10-12 s) S0 S1 hvA hvF  knr A(S0) A(S1) R0 > r, energy transfer decay dominate R0 < r, usual radiative and nonradiative decay dominate 20040300

Förster distance (in cm) Rate of energy transfer XMUGXQ PFS0501 Förster distance (in cm) Rate of energy transfer Efficieney of energy transfer 20040300

Example 100% transfer -萘 丹磺酰 D A 聚脯氨酸 n =1-12, r = 12- 46Å XMUGXQ PFS0501 Example 100% transfer -萘 丹磺酰 D A 聚脯氨酸 n =1-12, r = 12- 46Å Excited D, measure F of A no D F290= 2.3I0bcAA(A+ED) 0% transfer A’= A+ED 20040300

n =1, 100% transfer, the ratio of absorbance = the ratio of emission XMUGXQ PFS0501 Example n =1, 100% transfer, the ratio of absorbance = the ratio of emission 20040300

XMUGXQ PFS0501 example x = 5.9±0.3 20040300

Sensitized fluorescence and phosphorescence XMUGXQ PFS0501 Sensitized fluorescence and phosphorescence D(S1) D(S0) D(T1) A(T1) A(S1) A(S0) Sensitized fluorescence Sensitized phosphorescence For D, quenched For A, sensitized 20040300

Example Self-association of ATPase(腺苷三磷酸酶)molecules in lipid vesicles XMUGXQ PFS0501 Example Self-association of ATPase(腺苷三磷酸酶)molecules in lipid vesicles Mg2+-Ca2+-ATPase labeled individually with IAEDANS and IAF Acceptor Donor 20040300

Intra-molecule energy transfer XMUGXQ PFS0501 Intra-molecule energy transfer 20040300

Intra-molecule energy transfer XMUGXQ PFS0501 Intra-molecule energy transfer Trp HSA Tyr:Trp=18:1 R0 = 14Å Comparable to the diameter of most proteins 20040300

5.5.2 duo to photochemical reaction XMUGXQ PFS0501 5.5.2 duo to photochemical reaction 荧光猝灭所涉及的光化学反应类型 光化学反应荧光猝灭是指沿着激发态超平面发生的反应,导致激发态聚集数减少而引起的荧光猝灭。 单分子光化学反应 绝热光化学反应 产生另一种形态的发光分子,其发射波长不同于原来的发光体 TICT 非绝热光化学反应 产生另一种具有稳定基态的物质,不伴随光子的发射 光分解 20040300

激发态分子与其他分子发生反应,生成了稳定的或不稳定的新物质 XMUGXQ PFS0501 双分子光化学反应 激发态分子与其他分子发生反应,生成了稳定的或不稳定的新物质 光氧化还原 生成稳定的基态物质 激基二聚体 不具有稳定的基态 20040300

Excited state hypersurface R* XMUGXQ PFS0501 光化学反应的机制 Excited state hypersurface R* R P* P S0 S1 hvF hv’F TICT Dual fluorescence R* R P* P S0 S1 hvF hv’F Photoreaction 20040300

光化学反应的机制 P* R* S1 hvF P S0 P’ R XMUGXQ PFS0501 光化学反应的机制 R* R P* P S0 S1 hvF P’ Maurice R. Eftink, Fluorescence quenching: theory and application in “Topic in fluorescence spectroscopy” V2 principles, ed. By J.R.Lakowicz, p 53-120. Herbert C. Cheung, Resonance energy transfer, in “Topic in fluorescence spectroscopy” V2 principles, ed. By J.R.Lakowicz, p 128-171. 20040300

5.6 Application Q F Molecular beacons A D Q F Target DNA F Q XMUGXQ PFS0501 5.6 Application Q F Molecular beacons A D Q F Target DNA F Q ssDNA binding protein Denaturing reagent 20040300

XMUGXQ PFS0501 Molecular beacons Hairpin probe show no fluorescence, do not need separation Key type, almost no background fluorescence Specific probe Reference Xiaohong Fang, Tianwei Heffery, John Perlette, Weihong Tan (University of Florida, USA) Kemin Wang (Hunan University, P.R. CHINA), Anal. Chem. 2000, Dec.1 747A-753A 20040300