ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Soft-switching converters with constant switching frequency With two.

Slides:



Advertisements
Similar presentations
Electronic Engineering Final Year Project 2008 By Claire Mc Kenna Title: Point of Load (POL) Power Supply Design Supervisor: Dr Maeve Duffy.
Advertisements

Three Phase Controlled Rectifiers
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Averaging: Charge Arguments Averaging a terminal current of a (resonant)
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 State plane trajectory of a parallel-loaded tank circuit.
Quasi-square-wave ZVS converters
Switched-Mode DC Power Supplies Five configurations –Flyback –Forward –Push-pull –Half Bridge –Full-Bridge Operate at high frequencies –Easy to filter.
Chapter 20 Quasi-Resonant Converters
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Active clamp circuits Can be viewed as a lossless voltage-clamp snubber.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures The conventional forward converter Max v ds = 2V g + ringing Limited.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
9/29/2004EE 42 fall 2004 lecture 131 Lecture #13 Power supplies, dependent sources, summary of ideal components Reading: Malvino chapter 3, Next:
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters 20.2 Resonant switch topologies Basic ZCS switch cell: SPST switch SW : Voltage-bidirectional.
1 Parameters for various resonant switch networks.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Reduction of power converter size through increase of switching frequency Increasing.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures Zero-voltage transition converters The phase-shifted full bridge.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
1 Quasi-square-wave ZVS converters A quasi-square-wave ZVS buck Resonant transitions but transistor and diode conduction intervals are similar to PWM Tank.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.4 Load-dependent properties of resonant converters Resonant inverter design objectives:
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 General Solution for the Steady-State Characteristics of the Series.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from.
Soft-switching converters with constant switching frequency
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 36 Midterm Exam Averages: all students 78.1 on-campus students 78.3 off-campus.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Parallel resonant dc-dc converter
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Operation of the full bridge below resonance: Zero-current switching Series.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Chapter 19 Resonant Conversion Introduction 19.1Sinusoidal analysis of resonant converters.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Series resonant converter.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Operating Modes of the Series Resonant Converter Lecture 23 Resonant.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Steady state solution of state plane Two possible trajectories for given.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion Upcoming Assignments Preparation for Lecture 2: Read Section 19.1, Sinusoidal analysis.
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
Power Electronics Chapter 8 Soft-Switching Techniques.
Chapter 8 Switching Power Supplies
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Announcements Correction to HW #2, Problem 19.3 solution Clarification.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 23 Next Homework Assignment Problem 1 Conventional hard-switched flyback.
Chapter 20 Quasi-Resonant Converters
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1The zero-current-switching.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lectures Active clamp forward converter.
Resonant and Soft-Switching Techniques in Power Electronics ECEN 5817
Waveforms of the half-wave ZCS quasi-resonant switch cell
Buck-derived full-bridge converter
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 26 Discontinuous conduction mode (DCVM) Occurs at heavy load and low output.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Controlled Rectifiers
WEEK 7 DC SWITCHING POWER SUPPLIES, PART II 1. EXPECTATIONS Describe the supply isolation characteristics afforded by transformers. Draw basic forward,
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
Zero Voltage Switching Quasi-resonant Converters
Chapter 6 Soft-Switching dc-dc Converters Outlines
LECTURE 27 Controlled Rectifiers Dr. Rostamkolai
Lecture # 12&13 SWITCHING-MODE POWER SUPPLIES
Unit-3 RECTIFIERS, FILTERS AND REGULATORS :Half wave rectifier, ripple factor, full wave rectifier, Harmonic components in a rectifier circuit, Inductor.
Fundamentals of Power Electronics 1 Chapter 19: Resonant Conversion 19.3 Soft switching Soft switching can mitigate some of the mechanisms of switching.
Final Year Project: Wireless Power Transfer For Mobile Phone Kong Chin Hung D Supervisor: Dr. Wei-Nong FU.
ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 19 Time-Domain Analysis of Resonant and Soft-Switching Converters Principles.
Half-wave Rectifier.
Zero-current Switching Quasi-resonant Converters
Fault detection Lecture (3).
Buck-derived full-bridge converter
Power Electronic Drives - DC to AC converter / Inverter
UNIT-8 INVERTERS 11/27/2018.
Diode Rectifiers Chapter 5.
Resonant and Soft-Switching Techniques in Power Electronics ECEN 5817
ECEN 5817 Housekeeping I plan on indicating for each lecture(s) of this year the equivalent lecture(s) from Spr. 06. This will make it easy if you choose.
Power Electronics Lecture -11 Single Phase Controlled Rectifier.
INVERTERS. What is an Inverter? A static device that converts DC power into AC power at desired output voltage and frequency is called an Inverter. Applications.
Chapter 5 Isolated Switch-Mode dc-to-dc Converters
Presentation transcript:

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 1 Lecture 37 Soft-switching converters with constant switching frequency With two or more active switches, we can obtain zero-voltage switching in converters operating at constant switching frequency Often, the converter characteristics are nearly the same as their hard- switched PWM parent converters The second switch may be one that is already in the PWM parent converter (synchronous rectifier, or part of a half or full bridge). Sometimes, it is not, and is a (hopefully small) auxiliary switch Examples: Two-switch quasi-square wave (with synchronous rectifier) Two-switch multiresonant (with synchronous rectifier) Phase-shifted bridge with zero voltage transitions Forward or other converter with active clamp circuit These converters can exhibit stresses and characteristics that approach those of the parent hard-switched PWM converter (especially the last two), but with zero-voltage switching over a range of operating points

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 2 Lecture 37 Quasi-square wave buck with two switches Q2 can be viewed as a synchronous rectifier Additional degree of control is possible: let Q2 conduct longer than D2 would otherwise conduct Constant switching frequency control is possible, with behavior similar to conventional PWM Can obtain µ < 0.5 See Maksimovic PhD thesis, 1989 Original one-switch version Add synchronous rectifier

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 3 Lecture 37 The multiresonant switch Basic single-transistor version Synchronous rectifier version

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 4 Lecture 37 Multiresonant switch characteristics Single transistor version Analysis via state plane in supplementary course notes

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 5 Lecture 37 Multiresonant switch characteristics Two-transistor version with constant frequency

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 6 Lecture 37 ZVS active clamp circuits The auxiliary switch approach Forward converter implementationFlyback converter implementation Circuit can be added to any single switch in a PWM converter Main switch plus auxiliary switch behave as half-bridge circuit with dead- time zero-voltage transitions Beware of patent issues

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 7 Lecture 37 Forward converter implementation Zero-voltage switching of both transistors Resonant reset of transformer reduces transistor peak voltage, relative to traditional forward converter with auxiliary reset winding Small increase of rms transistor current Analysis in an upcoming lecture

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 8 Lecture 37 Zero-voltage transition converters The phase-shifted full bridge converter Buck-derived full-bridge converter Zero-voltage switching of each half- bridge section Each half-bridge produces a square wave voltage. Phase-shifted control of converter output A popular converter for server front- end power systems Efficiencies of 90% to 95% regularly attained Controller chips available

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 9 Lecture 37 Phase-shifted control Approximate waveforms and results (as predicted by analysis of the parent hard- switched converter)

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 10 Lecture 37 Actual waveforms, including resonant transitions

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 11 Lecture 37 Result of analysis Basic configuration: full bridge ZVT Phase shift  assumes the role of duty cycle d in converter equations Effective duty cycle is reduced by the resonant transition intervals Reduction in effective duty cycle can be expressed as a function of the form FP ZVT (J), where P ZVT (J) is a negative number similar in magnitude to 1. F is generally pretty small, so that the resonant transitions do not require a substantial fraction of the switching period Circuit looks symmetrical, but the control, and hence the operation, isn’t. One side of bridge loses ZVS before the other.

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 12 Lecture 37 Effect of ZVT: reduction of effective duty cycle

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 13 Lecture 37 Summary: recent soft-switched approaches with multiple transistors Represents an evolution beyond the quasi-square wave approach Zero-voltage transitions in the half-bridge circuit Output filter inductor operates in CCM with small ripple Circuit approaches that minimize the amount of extra current needed to attain zero-voltage switching -- these become feasible when there is more than one active switch Constant frequency operation Often, the converter characteristics reduce to a potentially small variation from the characteristics of the parent hard-switched PWM converter Commercial controllers are sometimes available Sometimes a conventional voltage-mode or current-mode PWM controller can be used -- just need to add dead times State-plane analysis of full-bridge ZVT and of active-clamp circuits to come

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 14 Lecture 37 ZVT Analysis

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 15 Lecture 37 Interval 1

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 16 Lecture 37 Normalized state plane

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 17 Lecture 37 Solution of state plane

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 18 Lecture 37 Subintervals 2 and 3

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 19 Lecture 37 Subinterval 4

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 20 Lecture 37 Subinterval 5 ZVS: output current charges C leg without requiring J > 1

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 21 Lecture 37 Subinterval 6 Current i c circulates around primary-side elements, causing conduction loss This current arises from stored energy in L c The current is needed to induce ZVS during next subinterval To maxzimize efficiency, minimize the length of this subinterval by choosing the turns ratio n such that M = V/nV g is only slightly less than 1

ECEN 5817 Resonant and Soft-Switching Techniques in Power Electronics 22 Lecture 37 Subintervals 7 to 11 Subintervals 7 to 11 and 0 are symmetrical to subintervals 1 to 6 Complete state plane trajectory: