Problem Solving Steps 1. Geometry & drawing: trajectory, vectors, coordinate axes free-body diagram, … 2. Data: a table of known and unknown quantities,

Slides:



Advertisements
Similar presentations
Conservation of Energy Chapter 11 Conservation of Energy The Law of Conservation of Energy simply states that: 1.The energy of a system is constant.
Advertisements

Physics 207: Lecture 13, Pg 1 Lecture 13 Goals: Assignment: l HW6 due Wednesday, Feb. 11 l For Thursday: Read all of Chapter 11 Chapter 10 Chapter 10 
Section 4-7 Solving Problems with Newton’s Laws; Free Body Diagrams
Gravitational potential energy. Conservation of energy
Sect. 8-3: Mechanical Energy & It’s Conservation.
Different Forces and Applications of Newton’s Laws Types of Forces Fundamental ForcesNon-fundamental Forces Gravitational (long-range)Weight, tidal forces.
Chapter 6: Circular Motion & Other Applications of Newton’s Laws
Aim: How can we apply Newton’s 2 nd Law of Acceleration? Do Now: An object with mass m is moving with an initial velocity v o and speeds up to a final.
Clickers Setup Turn on your clicker (press the power button) Set the frequency: –Press and hold the power button –Two letters will be flashing –If it’s.
Physics 151: Lecture 16, Pg 1 Physics 151: Lecture 16 Today’s Agenda l Today’s Topics: çConservation of mechanical energy çNonconservative forces and loss.
Physics 151: Lecture 15, Pg 1 Today’s Topics l Potential Energy, Ch. 8-1 l Conservative Forces, Ch. 8-2 l Conservation of mechanical energy Ch.8-4.
Problem Solving Steps 1. Geometry & drawing: trajectory, vectors, coordinate axes free-body diagram, … 2. Data: a table of known and unknown quantities,
Work and Kinetic Energy Work done by a constant force Work is a scalar quantity. No motion (s=0) → no work (W=0) Units: [ W ] = newton·meter = N·m = J.
Problem Solving Steps 1. Geometry & drawing: trajectory, vectors, coordinate axes free-body diagram, … 2. Data: a table of known and unknown quantities,
Problem Solving Steps 1. Geometry & drawing: trajectory, vectors, coordinate axes free-body diagram, … 2. Data: a table of known and unknown quantities,
Principle of Conservation of Energy
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW6 due Tuesday Oct. 25 th l l For Monday: Read Ch. 11 Chapter 10 Chapter 10   Understand.
Example: The simple pendulum l Suppose we release a mass m from rest a distance h 1 above its lowest possible point. ç What is the maximum speed of the.
Classical Mechanics Lecture 9 Today's Examples: a) Conservative Forces b) Potential and Mechanical energy Today's Concepts : a) Energy and Friction b)
The elevator in the world’s tallest building in Taiwan will carry a passenger up to the outdoor observations deck on the 89 th floor with an acceleration.
Dec. 8, 2001 Prof. Todd Adams, FSU Department of Physics1 Physics 2053C – Fall 2001 Review for Final Exam
Physics 2.2.
WORK In order for work to be done, three things are necessary:
WORK In order for work to be done, three things are necessary:
Work. Work is the product of the magnitude of the __________________ moved times the component of a ________________ in the direction of the ________________.
Bellringer 10/25 A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion,
Chapter 7 The Conservation of Energy. Consider an object dropped near the surface of the earth. If the distance is small then the gravitational force.
Physics 111: Mechanics Lecture 6 Wenda Cao NJIT Physics Department.
Applications & Examples of Newton’s 2nd Law
THE WORK OF A FORCE, PRINCIPLE OF WORK AND ENERGY, & PRINCIPLE OF WORK AND ENERGY FOR A SYSTEM OF PARTICLES Today’s Objectives: Students will be able to:
WORK AND ENERGY 1. Work Work as you know it means to do something that takes physical or mental effort But in physics is has a very different meaning.
Solving Problems with Newton’s Laws
Physics 201: Lecture 13, Pg 1 Lecture 13 l Goals  Introduce concepts of Kinetic and Potential energy  Develop Energy diagrams  Relate Potential energy.
Example 1: A 3-kg rock swings in a circle of radius 5 m
Mechanics Topic 2.2 Forces and Dynamics. Forces and Free-body Diagrams To a physicist a force is recognised by the effect or effects that it produces.
Equation of Motion for a Particle Sect nd Law (time independent mass): F = (dp/dt) = [d(mv)/dt] = m(dv/dt) = ma = m(d 2 r/dt 2 ) = m r (1) A 2.
Ch. 6: Circular Motion & Other Applications of Newton’s Laws
Uniform Circular Motion Centripetal forces keep these children moving in a circular path.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More gravitational potential energy Potential energy of a spring Work-kinetic.
Physics 207: Lecture 10, Pg 1 Lecture 10 l Goals:  Exploit Newton’s 3 rd Law in problems with friction  Employ Newton’s Laws in 2D problems with circular.
Applications & Examples of Newton’s Laws. Forces are VECTORS!! Newton’s 2 nd Law: ∑F = ma ∑F = VECTOR SUM of all forces on mass m  Need VECTOR addition.
Phys211C7 p1 Kinetic Energy: Energy associated with motion K = ½ mv 2 Work done by a force on an object is that forces contribution to  K may only depend.
APPLICATIONS A roller coaster makes use of gravitational forces to assist the cars in reaching high speeds in the “valleys” of the track. How can we design.
WORK, ENERGY AND POWER WHY ARE WE WORKING SO HARD?
Energy and Transformation chemical fuel energy  vehicle motion electric energy  turning mixer, drill, etc. wind turbine  electrical energy  turn mixer.
Units Motion Scalar / vector quantities Displacement / Velocity / Acceleration Vector components Forces 1 st & 2 nd law ∑ F = 0 & ∑ F = ma Force diagrams.
Exam 2 Review 8.02 W08D1. Announcements Test Two Next Week Thursday Oct 27 7:30-9:30 Section Room Assignments on Announcements Page Test Two Topics: Circular.
Motion, Forces and Energy Lecture 7: Potential Energy & Conservation The name potential energy implies that the object in question has the capability of.
Lecture 10: Work & Energy.
Chapter 7 Conservation of Energy (cont’d) Mechanical energy conservation Examples Work by non-conservative forces March 4, 2010.
Ch. 6, Work & Energy, Continued. Summary So Far Work-Energy Theorem: W net = (½)m(v 2 ) 2 - (½)m(v 1 ) 2   KE Total work done by ALL forces! Kinetic.
1 5 Overview Energy and the Joule Unit. Energy transformation. Energy storage. Power and Watt Unit. Homework: 2, 6, 9, 11, 13, 15, 27, 33, 37, 45, 49,
Physics 1D03 - Lecture 22 Potential Energy Serway and Jewett 8.1 – 8.3 Work and potential energy Conservative and non-conservative forces Gravitational.
Examples: Mechanical Energy Conservation
Example Problem Find the acceleration of each block in the following frictionless system: m1m1 m2m2 +y +x Coupled system: mass m 2 moves same distance.
Physics 1D03 - Lecture 19 Kinetic Energy. Physics 1D03 - Lecture 19 Then the Work-Energy Theorem says: The total work done by all external forces acting.
Energy Transfer….. Examples of lots of Kinetic Energy.
Chapter 7 Conservation of Energy Conservative force Non-conservative force potential energy & potential function March 2, 2010.
Weight = mass x acceleration due to gravity
1 PPMF102 – Lecture 2 Work & Energy. 2 Work = force x displacement x cos  Work = force x displacement x cos  W = Fs cos  W = Fs cos  Scalar quantity.
Inclined Plane Problems. Axes for Inclined Planes X axis is parallel to the inclined plane Y axis is perpendicular to the inclined plane Friction force.
4-8 Applications Involving Friction, Inclines
Today: (Ch. 6 & Review)  Work and Energy  Review (Chapter 1 to 5)
FRICTION and Newton’s second law. The “Normal” Force, N When an object is pressed against a surface, the surface pushes back. (That’s Newton’s 3 rd Law)
Today: (Ch. 3) Tomorrow: (Ch. 4) Forces and Motion in Two and Three Dimensions Equilibrium and Examples Projectile Motion.
Alternate Definition of Work. Suppose an object is moving in a direction given by its displacement as shown. Suppose the net force is acting as shown.
Classical Mechanics Midterm 2 Review Force and Energy
Presentation transcript:

Problem Solving Steps 1. Geometry & drawing: trajectory, vectors, coordinate axes free-body diagram, … 2. Data: a table of known and unknown quantities, including “implied data”. 3. Equations ( with reasoning comments ! ), their solution in algebraic form, and the final answers in algebraic form !!! 4. Numerical calculations and answers. 5. Check: dimensional, functional, scale, sign, … analysis of the answers and solution.

How to measure friction by meter and clock? Exam Example 9: d) Find also the works done on the block by friction and by gravity as well as the total work done on the block if its mass is m = 2 kg (problem 6.68).

d) Work done by friction: W f = -f k L = -μ k F N L = -L μ k mg cosθ max = -9 J ; work done by gravity: W g = mgH = 10 J ; total work: W = mv || 2 /2 = 2 kg (1m/s) 2 /2 = 1 J = W g + W f = 10 J – 9 J = 1 J

Exam Example 10: Blocks on the Inclines (problem 5.92) m 1 m2m2 X X α1α1 α2 α2 Data: m 1, m 2, μ k, α 1, α 2, v x <0 Solution: Newton’s second law for block 1: F N1 = m 1 g cos α 1, m 1 a x = T 1x +f k1x -m 1 g sinα 1 (1) block 2: F N2 = m 2 g cosα 2, m 2 a x = T 2 x +f k2x + m 2 g sinα 2 (2) Find: (a) f k1x and f k2x ; (b) T 1x and T 2x ; (c) acceleration a x. (a) f k1x = sμ k F N1 = s μ k m 1 g cosα 1 ; f k2x = sμ k F N2 = sμ k m 2 g cosα 2 ; s = -v x /v (c) T 1x =-T 2x, Eqs.(1)&(2)→ (b)

Exam Example 11: Hoisting a Scaffold Y 0 m Data: m = 200 kg Find: (a) a force F y to keep scaffold in rest; (b) an acceleration a y if F y = N; (c) a length of rope in a scaffold that would allow it to go downward by 10 m Solution Newton’s second law: (a) Newton’s third law: F y = - T y, in rest a y = 0→ F(a=0)= W/5= mg/5 =392 N (b) a y = (5T-mg)/m = 5 (-F y )/m – g = 0.2 m/s 2 (c) L = 5·10 m = 50 m (pulley’s geometry)

Data: L, β Find: (a) tension force F; (b) speed v; (c) period T. Solution: Newton’s second law Centripetal force along x: Equilibrium along y: Two equations with two unknowns: F, v The conical pendulum (example 5.20) or a bead sliding on a vertical hoop (problem 5.115) Exam Example 12: R

Exam Example 13: Stopping Distance (problems 6.29, 7.29) x 0 Data: v 0 = 50 mph, m = 1000 kg, μ k = 0.5 Find: (a) kinetic friction force f kx ; (b)work done by friction W for stopping a car; (c)stopping distance d ; (d)stopping time T; (e)friction power P at x=0 and at x=d/2; (f)stopping distance d’ if v 0 ’ = 2v 0. Solution: (a)Vertical equilibrium → F N = mg → friction force f kx = - μ k F N = - μ k mg. (b) Work-energy theorem → W = K f – K 0 = - (1/2)mv 0 2. (c) W = f kx d = - μ k mgd and (b) yield μ k mgd = (1/2)mv 0 2 → d = v 0 2 / (2μ k g). Another solution: second Newton’s law ma x = f kx = - μ k mg → a x = - μ k g and from kinematic Eq. (4) v x 2 =v a x x for v x =0 and x=d we find the same answer d = v 0 2 / (2μ k g). (d) Kinematic Eq. (1) v x = v 0 + a x t yields T = - v 0 /a x = v 0 / μ k g. (e) P = f kx v x → P(x=0) = -μ k mgv 0 and, since v x 2 (x=d/2) = v 0 2 -μ k gd = v 0 2 /2, P(x=d/2) = P(x=0)/2 1/2 = -μ k mgv 0 /2 1/2. (f) According to (c), d depends quadratically on v 0 → d’ = (2v 0 ) 2 /(2μ k g) = 4d

Exam Example 14: Swing (example 6.8) Find the work done by each force if (a) F supports quasi-equilibrium or (b) F = const, as well as the final kinetic energy K. Solution: (a) Σ F x = 0 → F = T sinθ, Σ F y = 0 → T cosθ = w = mg, hence, F = w tanθ ; K = 0 since v=0. W T =0 always since Data: m, R, θ

Exam Example 15: Riding loop-the-loop (problem 7.46) Data: R= 20 m, v 0 =0, m=100 kg Find: (a) min h such that a car does not fall off at point B, (b) kinetic energies for that h min at the points B, C, and D, (c) if h = 3.5 R, compute velocity and acceleration at C. D Solution: (a)To avoid falling off, centripetal acceleration v 2 /R > g → v 2 > gR. Conservation of energy: K B +2mgR=mgh → (1/2)mv B 2 =mg(h-2R). Thus, 2g(h-2R) > gR → h > 5R/2, that is h min = 5R/2. (b) K f +U f =K 0 +U 0, K 0 =0 → K B = mgh min - 2mgR = mgR/2, K C = mgh min - mgR = 3mgR/2, K D = mgh min = 5mgR/2. (c) (1/2)mv C 2 = K C = mgh – mgR = 2.5 mgR → v C = (5gR) 1/2 ; a rad = v C 2 /R = 5g, a tan = g since the only downward force is gravity.

Exam Example 16: Spring on the Incline (Fig.7.25, p.231) Data: m = 2 kg, θ = 53.1 o, y 0 = 4 m, k = 120 N/m, μ k = 0.2, v 0 =0. 0 ysys yfyf y0y0 y θ Solution: work-energy theorem W nc =ΔK+ΔU grav +ΔU el (a)1 st passage: W nc = -y 0 μ k mg cosθ since f k =μ k F N = =μ k mg cosθ, ΔK=K 1, ΔU grav = - mgy 0 sinθ, ΔU el =0 → K 1 =mgy 0 (sinθ-μ k cosθ), v 1 =(2K 1 /m) 1/2 =[2gy 0 (sinθ–μ k cosθ)] 1/2 2 nd passage: W nc = - (y 0 +2|y s |) μ k mg cosθ, ΔK=K 2, ΔU grav = -mgy 0 sinθ, ΔU el =0 → K 2 =mgy 0 sinθ-(y 0 +2|y s |) μ k mgcosθ, v 2 =(2K 2 /m) 1/2 (b) (1/2)ky s 2 = U el = ΔU el = W nc – ΔU grav = mg (y 0 +|y s |) (sinθ-μ k cosθ) → αy s 2 +y s –y 0 =0, where α=k/[2mg (sinθ-μ k cosθ)], → y s =[-1 - (1+4αy 0 ) 1/2 ]/(2α) W nc = - (y 0 +|y s |) mgμ k cosθ (c) K f =0, ΔU el =0, ΔU grav = -(y 0 –y f ) mg sinθ, W nc = -(y 0 +y f +2|y s |) μ k mg cosθ → Find: (a) kinetic energy and speed at the 1 st and 2 nd passages of y=0, (b)the lowest position y s and friction energy losses on a way to y s, (c) the highest position y f after rebound. m

Exam Example 17: Proton Bombardment (problem 6.76) Data: mass m, potential energy U=α/x, initial position x 0 >0 and velocity v 0x <0. Find : (a) Speed v(x) at point x. (b) How close to the repulsive uranium nucleus 238 U does the proton get? (c) What is the speed of the proton when it is again at initial position x 0 ? Solution: Proton is repelled by 238 U with a force Newton’s 2 nd law, a x =F x /m, allows one to find trajectory x(t) as a solution of the second order differential equation: (a)Easier way: conservation of energy (b)Turning point: v(x min )=0 (c)It is the same since the force is conservative: U(x)=U(x 0 ) v(x)=v(x 0 ) 238 U 0 x m proton x0x0 x min