1 NUINT04 - Italy Arie Bodek, University of Rochester Un-Ki Yang, University of Chicago Update on low Q2 Corrections to LO-GRV98 PDFs Work in 2004: Note.

Slides:



Advertisements
Similar presentations
Bodek-Yang Update to the Bodek-Yang Unified Model for Electron- and Neutrino- Nucleon Scattering Cross sections Update to the Bodek-Yang Unified.
Advertisements

I : A Unified Model for inelasitc e-N and neutrino-N cross sections at all Q 2 Arie Bodek, Inkyu Park- U. Rochester Un-ki Yang- U. Chicago DIS 2005 Madison,
July 20-25, 2009N u F a c t 0 9 IIT, Chicago Quark-Hadron Duality in lepton scattering off nucleons/nuclei from the nucleon to the nucleus Krzysztof M.
Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
1cteq ss 11 B. Properties of the PDFs -- Definitions First, what are the Parton Distribution Functions? (PDFs) The PDFs are a set of 11 functions, f i.
May 2005CTEQ Summer School1 Global Analysis of QCD and Parton Distribution Functions Dan Stump Department of Physics and Astronomy Michigan State University.
Arie Bodek, Univ. of Rochester1 Quarks for Dummies: Quarks for Dummies: Modeling (e/  /  -N Cross Sections from Low to High Energies: from DIS to Resonance,
Arie Bodek, Univ. of Rochester1 Relating electron & neutrino cross sections in Quasi-Elastic, Resonance and DIS regimes Arie Bodek University of Rochester.
Arie Bodek, Univ. of Rochester1 Quarks for Dummies TM * Quarks for Dummies TM * Modeling (e/  /  -N Cross Sections from Low to High Energies: from DIS.
Arie Bodek, Univ. of Rochester1 Quarks for Dummies TM * Quarks for Dummies TM * Modeling (e/  /  -N Cross Sections from Low to High Energies: from DIS.
Arie Bodek, Univ. of Rochester1 Quarks for Dummies TM * Quarks for Dummies TM * Modeling (e/  /  -N Cross Sections from Low to High Energies: from DIS.
Arie Bodek, Univ. of Rochester1 Relating electron & neutrino cross sections in Quasi-Elastic, Resonance and DIS regimes Arie Bodek University of Rochester.
Quark Hadron Duality and Rein-Sehgal Model † Krzysztof M. Graczyk , Cezary Juszczak, Jan T. Sobczyk Institute of Theoretical Physics Wrocław University,
1 A : Nobel Prize Friedman, Kendall, Taylor for their pioneering investigations concerning deep inelastic scattering of electrons on protons and.
Un-ki Yang, Manchester 1 Modeling Neutrino Structure Functions at low Q 2 Arie Bodek University of Rochester Un-ki Yang University of Manchester NuInt.
Howard Budd, Univ. of Rochester1 Vector and Axial Form Factors Applied to Neutrino Quasi-Elastic Scattering Howard Budd University of Rochester (in collaboration.
Un-ki Yang, Manchester 1 Nuclear Effects in Electron Scattering Arie Bodek University of Rochester Un-ki Yang University of Manchester NuFact 2008, Valencia,
Arie Bodek, Univ. of Rochester1 A. Bodek – Feb updated, 2002 This same WWW area has PDF file copies of most of the references used.
Arie Bodek, Univ. of Rochester1 Quarks for Dummies TM * Quarks for Dummies TM * Modeling (e/  /  -N Cross Sections from Low to High Energies: from DIS.
Arie Bodek, Univ. of Rochester1 Vector and Axial Form Factors Applied to Neutrino Quasi-Elastic Scattering Howard Budd University of Rochester
Arie Bodek - Rochester 1 A Unified Model for inelastic e-N and neutrino-N cross sections at all Q Updates to Bodek-Yang Model A Unified Model for.
Steve Manly and Arie Bodek, Univ. of Rochester 1 Electron and Neutrino Interactions on Nucleons and Nuclei in the Next Decade A New International Effort.
Arie Bodek, Univ. of Rochester1 [P13.010] Modeling Neutrino, Electron and Photon Cross Sections at.
I : A Unified Model for inelastic e-N and neutrino-N cross sections at all Q 2 Arie Bodek, Inkyu Park- U. Rochester Un-ki Yang- U. Chicago Santa-Fe, October,
Arie Bodek, Univ. of Rochester1 [P13.011] Modeling Neutrino Quasi-elastic Cross Sections Using Up.
Arie Bodek, Univ. of Rochester1 Outline of a Program in Investigating Nucleon and Nuclear Structure at all Q 2 - Starting with P ( PART 1 of JUPITER.
Arie Bodek, Univ. of Rochester1 Measurement of F 2 and  L /  T on Nuclear-Targets in the Nucleon Resonance Region - E First Stage of a Program.
Does a nucleon appears different when inside a nucleus ? Patricia Solvignon Argonne National Laboratory Postdoctoral Research Symposium September 11-12,
Inclusive Jets in ep Interactions at HERA, Mónica V á zquez Acosta (UAM) HEP 2003 Europhysics Conference in Aachen, July 19, Mónica Luisa Vázquez.
Martin TzanovDIS2005April, 2005 Introduction NuTeV experiment Differential cross section and structure functions Method Differential cross section extraction.
Arie Bodek, Univ. of Rochester1 Modeling -(Nucleon/Nucleus) Cross Sections at all Energies - from the Few GeV to the Multi GeV Region Modeling of (e/ 
Monday, Jan. 27, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #4 Monday, Jan. 27, 2003 Dr. Jae Yu 1.Neutrino-Nucleon DIS 2.Formalism of -N DIS.
Duality: Recent and Future Results Ioana Niculescu James Madison University Hall C “Summer” Workshop.
Predictions for high energy neutrino cross-sections from ZEUS-S Global fit analysis S Chekanov et al, Phys Rev D67, (2002) The ZEUS PDFs are sets.
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Mary Hall Reno Neutrino-nucleon interactions: what can we learn from electromagnetic interactions and quark-hadron duality? Hallsie Reno Trento, May 2005.
Measurement of F 2 and R=σ L /σ T in Nuclei at Low Q 2 Phase I Ya Li Hampton University January 18, 2008.
Nuclear Duality, electron scattering, and neutrino scattering: Nucleon Resonance Region P. Bosted August  Quark-Hadron duality in F1, F2, g1, and.
FNAL Users meeting, 2002Un-ki Yang, Univ. of Chicago1 A Measurement of Differential Cross Sections in Charged-Current Neutrino Interactions on Iron and.
PV DIS: SUSY and Higher Twist M.J. Ramsey-Musolf Caltech Wisconsin-Madison S. Mantry, K. Lee, G. Sacco Caltech.
Jump to first page Quark-Hadron Duality Science Driving the 12 GeV Upgrade Cynthia Keppel for Jefferson Lab PAC 23.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Arie Bodek, Univ. of Rochester1 Measurement of F 2 and  L /  T on Nuclear-Targets in the Nucleon Resonance Region - P JUPITER - JLab Unified Program.
HERA Physics and Gustav Kramer Alice Valkárová, Charles University, Prague 2nd April 2013Festkolloquium - G.Kramer1.
Arie Bodek, Univ. of Rochester1 JUPITER - JLab Unified Program to Investigate Targets and Electroproduction of Resonances In collaboration with The MINERvA.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
Event Shapes, Alexander Savin University of WisconsinDIS 2006, April 21, Event Shapes in NC DIS at ZEUS Alexander A. Savin University of Wisconsin.
Exclusive electroproduction of two pions at HERA V. Aushev (on behalf of the ZEUS Collaboration) April 11-15, 2011 Newport News Marriott at City Center.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
Don LincolnExperimental QCD and W/Z+Jet Results 1 Recent Dijet Measurements at DØ Don Lincoln Fermi National Accelerator Laboratory for the DØ Collaboration.
Wednesday, Jan. 31, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #4 Wednesday, Jan. 31, 2007 Dr. Jae Yu 1.QCD Evolution of PDF 2.Measurement.
Neutrino DIS measurements in CHORUS DIS2004 Strbske Pleso Alfredo G. Cocco INFN – Napoli.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
New Measurement of the EMC effect for Light Nuclei and Global Study of the A-Dependence Patricia Solvignon Argonne National Laboratory ECT 2008 Workshop.
Excited QCD 2014 Bjelasnica Mountain, Sarajevo. Outline Sara Taheri Monfared (IPM) 2.
Costas Foudas, Imperial College, Jet Production at High Transverse Energies at HERA Underline: Costas Foudas Imperial College
Moments and Structure Functions at Low Q 2 Rolf Ent, DIS Formalism - F 2 Moments: Old Analysis (R “Guess”…) - E L/T Separation  F 2, F 1,
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
Event Shapes in NC DIS at ZEUS
Hadron-structure studies at a neutrino factory
Modeling of (e/m/n -(Nucleon/Nucleus) Cross Sections at all Energies - from the Few GeV to the Multi GeV Region Arie Bodek Univ. of Rochester and Un-Ki.
Arie Bodek, Univ. of Rochester
Arie Bodek University of Rochester
Nuclear Duality (and related topics…)
Arie Bodek University of Rochester Un-ki Yang University of Manchester
Duality in Pion Electroproduction (E00-108) …
Proton structure at low Q2
in the Rein-Sehgal Model
Semi-Inclusive DIS measurements at Jefferson Lab
University of Tennessee
Presentation transcript:

1 NUINT04 - Italy Arie Bodek, University of Rochester Un-Ki Yang, University of Chicago Update on low Q2 Corrections to LO-GRV98 PDFs Work in 2004: Note this is a Pseudo Leading Order Model 1.Vector PDFs: Extrat the low Q2 corrections to d and u valence quarks separately now by including all inelastic electron-hydrogen, electron-deuterium (including Jlab), photo-production on hydrogen and photo-production on deuterium in the fits (all fits include the c-cbar photon-gluon fusion contribution at high energy - this cross section is zero in leading order) 2.Compare to photo-production and Jlab electro-production Data in Resonance region (data not included in fit yet) 3.Compare to neutrino CCCFR-Fe, CDHS-Fe, CHORUS-Pb differential cross section (without c-cbar boson-fusion in yet - to be added next since it is high energy data) assume V=A 4.We aave a model for Axial low Q2 PDFs, but need to compare to low energy neutrino data to get exact parameters - next.

2 For applications to Neutrino Oscillations at Low Energy (down to Q2=0) the best approach is to use a LO PDF analysis (including a more sophisticated target mass analysis) and include the missing QCD higher order terms in the form of Empirical Higher Twist Corrections. Reason: For Q2>1 both Current Algebra exact sum rules (e.g. Adler sum rule) and QCD sum rules (e.g. momentum sum rule) are satisfied. This is why duality works in the resonance region (so use NNLO QCD analysis) For Q2<1, QCD corrections diverge, and all QCD sum rules (e.g momentum sum rule) break down, and duality breaks down in the resonance region. In contrast, Current Algebra Sum rules e,g, Adle sum rule which is related to the Number of (U minus D) Valence quarks) are valid.

3 Original approach (NNLO QCD+TM) was to explain the non-perturbative QCD effects at low Q 2, but now we reverse the approach: Use LO PDFs and “effective target mass and final state masses” to account for initial target mass, final target mass, and missing higher orders Modified LO = Pseudo NNLO approach for low energies Applications to Jlab and Neutrino Oscillations P=M q m f =M* (final state interaction) Resonance, higher twist, and TM  w  = Q 2 +m f 2+ O(m f 2 -m i 2 ) + A M (1+(1+Q 2 / 2 ) ) 1/2 +B Xbj= Q 2 /2 M K factor to PDF, Q 2 /[Q 2 +C] A : initial binding/target mass effect plus higher order terms B: final state mass m f 2,  m  and photo- production limit ( Q 2 =0)

4 Initial quark mass m I and final mass,m F =m * bound in a proton of mass M Summary: INCLUDE quark initial Pt) Get  scaling (not x=Q 2 /2M ) for a general parton Model  Is the correct variable which is Invariant in any frame : q3 and P in opposite directions P= P 0 + P 3,M P F = P I 0,P I 3,m I P F = P F 0,P F 3,m F =m * q=q3,q0 Most General Case: (Derivation in Appendix)  ‘ w = [Q’ 2 +B] / [ M (1+(1+Q 2 / 2 ) ) 1/2 +A] (with A=0, B=0)  where2Q’ 2 = [Q 2 + m F 2 - m I 2 ] + { ( Q 2 +m F 2 - m I 2 ) 2 + 4Q 2 (m I 2 +P 2 t) } 1/2  Bodek-Yang: Add B and A to account for effects of additional  m 2  from NLO and NNLO (up to infinite order) QCD effects. For case  w with P 2 t =0  see R. Barbieri et al Phys. Lett. 64B, 1717 (1976) and Nucl. Phys. B117, 50 (1976) Special cases: (1) Bjorken x, x BJ =Q 2 /2M , -> x  For m F 2 = m I 2 =0 and High 2, (2) Numerator m F 2 : Slow Rescaling  as in charm production (3) Denominator : Target mass term  =Nachtman Variable  =Light Cone Variable  =Georgi Politzer Target Mass var. ( all the same  )

5

6 Correct for Nuclear Effects measured in e/ muon expt. Comparison of Fe/D F2 data In resonance region (JLAB) Versus DIS SLAC/NMC data In  TM (C. Keppel 2002).

7

8

9

10

11

12

13 Note: All data has been radiatively corrected. Neutrino Experiments MUST apply radiative corrections - Tables can be provided (no consistent PDF type analysis can be done without radiative corrections - e.g. Bardin) Work in Progress: Now working on the axial structure functions and next plan to work on resonance fits. Next: JUPITER at Jlab (Bodek,Keppel) will provided electron-Carbon (also e-H and e-D and other nuclei such as e-Fe) in resonance region. Next: MINERvA at FNAL (McFarland, Morfin) will provide Neutrino-Carbon data at low energies.

14 Comparison of LO+HT to neutrino data on Iron [CCFR] (not used in this fit V=A) Last year’s fits Apply nuclear corrections using e/m scattering data. (Next slide) Calculate F 2 and xF 3 from the modified PDFs with  w Use R=Rworld fit to get 2xF 1 from F 2 Implement charm mass effect through  w slow rescaling algorithm, for F 2 2xF 1, and XF 3 The modified GRV98 LO PDFs with a new scaling variable,  w describe CCFR diff. Cross sect. (E =30–300 GeV) well (except at the lowest x) E = 55 GeV is shown Construction  w PDFs GRV98 modified ---- GRV98 (x,Q 2 ) unmodified Left neutrino, Right antineutrino

15 Compare Last Year to this Year (this year also use R1998 instead of R world) V=A, lowest x no c-cbar contribution  w PDFs GRV98 modified Very low X needs work ---- GRV98 (x,Q 2 ) unmodified (maybe PDF f(x) needed) Left neutrino, Right antineutrino Last year

16

17

18

19 End CCFR neutrino and antineutrino Begin CDHS Neutrino Note, further studies needed. Are the data reliable at low x (rad corrections, resolution, flux). If R is smaller than R 1998 (nuclear shadowing) (waiting for Jlab data). What about c-cbar contribution (currently being calculated). Or make sure that differential cross section code has no bugs. With that caveat we show some data versus model. We we will be better agreement between data and model if R is smaller than R 1998, and if we include c-cbar NLO terms. However, Is the axial F2 larger? Whatabout shadowing for axial versus vector especially for iron and lead. All under investigation

20

21

22

23

24

25

26 Extra comparisons

27

28

29

30

31

32 End CCFR neutrino and antineutrino Begin CDHS Neutrino