5.1 ME 340: Materials & Design Chapter 5
5.2 ME 340: Materials & Design
5.3 ME 340: Materials & Design
5.4 ME 340: Materials & Design A and C 1 are constants Fatigue Behavior of Un-cracked components (mean stress = zero) BASQUIN’S LAW (Empirical relation) Neither max or min stress above yield stress
5.5 ME 340: Materials & Design LOW CYCLE FATIGUEEither max or min stress above yield stress COFFIN-MANSON LAW
5.6 ME 340: Materials & Design (mean tensile stress > zero) GOODMAN’S RULE
5.7 ME 340: Materials & Design Miner’s Rule of Cumulative Damage
5.8 ME 340: Materials & Design Fatigue Behavior of Cracked components X
5.9 ME 340: Materials & Design K increases with crack size
5.10 ME 340: Materials & Design Fig. X
5.11 ME 340: Materials & Design
5.12 ME 340: Materials & Design
5.13 ME 340: Materials & Design
5.14 ME 340: Materials & Design Component subjected to fatigue cycles (mean stress =0). Normal stress=1.6MPa. K IC =18MPa.m 1/2 Edge surface crack = 2cm A = 4.3x10 -8 m(MNm -3/2 ) -4 m=4 Will the crack grow under the cyclic loads it is subjected to? And what is the likely life of the component? Problem
5.15 ME 340: Materials & Design
5.16 ME 340: Materials & Design
5.17 ME 340: Materials & Design