Spin Injection Hall Effect: a new member of the spintronic Hall family and its implications in nano-spintronics Research fueled by: Optical Spintronics.

Slides:



Advertisements
Similar presentations
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Advertisements

New developments in the AHE: New developments in the AHE: phenomenological regime, unified linear theories, and a new member of the spintronic Hall family.
JAIRO SINOVA Research fueled by: New Horizons in Condensed Matter Physics Aspen Center for Physics February 4 th 2008 Theory challenges of semiconducting.
4. Disorder and transport in DMS, anomalous Hall effect, noise
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
The quantum AHE and the SHE The persistent spin helix
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
New developments in the AHE: New developments in the AHE: phenomenological regime, unified linear theories, and a new member of the spintronic Hall family.
SPIN-HALL EFFECT a new adventure in condensed matter physics San Houston State University, January 22 th 2008 JAIRO SINOVA Research fueled by: NERC.
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
Research fueled by: Instituto de Ciencia de Materiales de Madrid-CSIC November 19 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR.
Spin-injection Hall effect Spin-injection Hall effect: A new member of the spintronic Hall family Institute of Physics of the Academy of Science of the.
Spin-injection Hall Effect:
Research fueled by: University of Utah November 9 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Echoes of special relativity in.
Spin-dependent Hall effects and other thoughts on recent progress and future challenges in spintronics Progress in Spintronics and Graphene Research June.
JAIRO SINOVA Research fueled by: NERC ICNM 2007, Istanbul, Turkey July 25 th 2007 Anomalous and Spin-Hall effects in mesoscopic systems.
Research fueled by: Freie Universitaet Berlin April 12 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR New paradigms in spin-charge.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Les Houches, June 2006.
Optical study of Spintronics in III-V semiconductors
Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime Workshop on Spintronics and Low Dimensional Magnetism June.
Research fueled by: Universität zu Köln November 12 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Echoes of special relativity in.
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
Spin Injection Hall Effect: a new member of the spintronic Hall family Symposium Spin Manipulation in Solid State Systems Würzburg, October 8th - 9th,
Research fueled by: MRS Spring Meeting San Francisco April 28th 2011 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Topological thermoelectrics.
Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Jörg Wunderlich, A. Irvine, et al Institute of Physics.
Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Jörg Wunderlich, A. Irvine, et al Institute of Physics.
Spin-injection Hall effect Spin-injection Hall effect: A new member of the spintronic Hall family Computational Magnetism and Spintronics International.
Research fueled by: Spintronics Tutorial Session March 20 th, 2011 APS March Meeting JAIRO SINOVA Texas A&M University Institute of Physics ASCR Spin Hall.
Research fueled by: Ohio State University February 9 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Exploiting the echoes of special.
School of Physics and Astronomy, University of Nottingham, UK
Research fueled by: Forschungszentrum Jülich November 11 th, 2009 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Joerg W.
New spintronic device concept using spin injection Hall effect: a new member of the spintronic Hall family JAIRO SINOVA Texas A&M University Institute.
Spin-injection Hall effect Spin-injection Hall effect: A new member of the spintronic Hall family Prairie View A&M Univeristy April 8 th, 2009 JAIRO SINOVA.
Anomalous Hall transport in metallic spin-orbit coupled systems November 11 th 2008 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Research.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Topological Aspects of the Spin Hall Effect Yong-Shi Wu Dept. of Physics, University of Utah Collaborators: Xiao-Liang Qi and Shou-Cheng Zhang (XXIII International.
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
Institute of Physics ASCR
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Research fueled by: 8th International Workshop on Nanomagnetism & Superconductivity Coma-ruga July 2 nd, 2012 Expecting the unexpected in the spin Hall.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
Research fueled by: Frontiers in Materials: Spintronics Strasboug, France May 13 th, 2012 Expecting the unexpected in the spin Hall effect: from fundamental.
German Physical Society Meeting TU Berlin March 26 th, 2012 Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR UCLA A. Kovalev.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Spin-injection Hall effect Spin-injection Hall effect: A new member of the spintronic Hall family University of Maryland March 12 th, 2009 JAIRO SINOVA.
Research fueled by: International Symposium High Performance Computing in Nano-Spintronics Hamburg, November 30 th, 2011 Transport theory and simulations.
Electric-field controlled semiconductor spintronic devices
Introduction to Spintronics
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Hall effects and weak localization in strong SO coupled systems : merging Keldysh, Kubo, and Boltzmann approaches via the chiral basis. SPIE, San Diego,
Spin-orbit interaction in semiconductor quantum dots systems
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
German Physical Society Meeting March 26 th, 2012 Berlin, Germany Research fueled by: JAIRO SINOVA Texas A&M University Institute of Physics ASCR UCLA.
Spin-dependent transport phenomena in strongly spin-orbit coupled mesoscopic systems: spin Hall effect and Aharonov-Casher Hong Kong, August 17 th 2005.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Anomalous Hall effects :
Qian Niu 牛谦 University of Texas at Austin 北京大学
6NHMFL, Florida State University, Tallahassee, Florida 32310, USA
Presentation transcript:

Spin Injection Hall Effect: a new member of the spintronic Hall family and its implications in nano-spintronics Research fueled by: Optical Spintronics Meeting Hitachi-Cambridge, October 27 th, 2009 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Joerg Wunderlich, X. Xu, A. Irvine, et al Institute of Physics ASCR Tomas Jungwirth, Vít Novák, et al Texas A&M L. Zarbo

2 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Can we achieve direct spin polarization injection, detection, and manipulation by electrical means in an all paramagnetic semiconductor system? Long standing paradigm: Datta-Das FET Unfortunately it has not worked : no reliable detection of spin-polarization in a diagonal transport configuration No long spin-coherence in a Rashba spin-orbit coupled system Towards a REALISTIC spin-based non-magnetic FET device

Ohno et al. Nature’99, others Crooker et al. JAP’07, others  Magneto-optical imaging  non-destructive  lacks nano-scale resolution and only an optical lab tool  MR Ferromagnet  electrical  destructive and requires semiconductor/magnet hybrid design & B-field to orient the FM  spin-LED  all-semiconductor  destructive and requires further conversion of emitted light to electrical signal Spin detection in semiconductors

4 SHE B=0 charge current gives spin current Optical detection SHE -1 B=0 spin current gives charge current Electrical detection j s ––––––––––– iSHE I _ F SO _ _ _ majority minority V The family of spintronic Hall effects AHE B=0 polarized charge current gives charge-spin current Electrical detection

J. Wunderlich, B. Kaestner, J. Sinova and T. Jungwirth, Phys. Rev. Lett (2005) Spin-Hall Effect 5 B. Kaestner, et al, JPL 02; B. Kaestner, et al Microelec. J. 03; Xiulai Xu, et al APL 04, Wunderlich et al PRL 05 Proposed experiment/device: Coplanar photocell in reverse bias with Hall probes along the 2DEG channel Borunda, Wunderlich, Jungwirth, Sinova et al PRL 07 Utilize technology developed to detect SHE in 2DHG and measure polarization via Hall probes

i p n 2DHG Device schematics: materials

- 2DHG i p n Device schematics: trench

i p n 2DHG 2DEG Device schematics: n-etch

VdVd VHVH 2DHG 2DEG VsVs 9 Device schematics: materials

2DHG 2DEG e h e e ee e h h h h h VsVs VdVd VHVH 10 Device schematics: SIHE measurement

11 Nanoelectronics, spintronics, and materials control by spin-orbit coupling 2DHG 2DEG e h e e ee e h h h h h VsVs VdVd VHVH Spin-injection Hall effect device schematics

12 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-injection Hall device measurements trans. signal σoσoσoσo σ+σ+σ+σ+ σ-σ-σ-σ- σoσoσoσo VLVL

13 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-injection Hall device measurements trans. signal σoσoσoσo σ+σ+σ+σ+ σ-σ-σ-σ- σoσoσoσo VLVL SIHE ↔ Anomalous Hall Local Hall voltage changes sign and magnitude along a channel of 6 μm

and high temperature operation Zero bias- + + -- + + -- 14 Persistent Spin injection Hall effect

15 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-dynamics in 2D electron gas with Rashba and Dresselhauss SO coupling The 2DEG is well described by the effective Hamiltonian: Hence For our 2DEG system:

16 Nanoelectronics, spintronics, and materials control by spin-orbit coupling What is special about α≈β spin along the [110] direction is conserved long lived precessing spin wave for spin perpendicular to [110] The nesting property of the Fermi surface:

17 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Effects of Rashba and Dresselhaus SO coupling  = -  [110] _ k y [010] k x [100]  > 0,  = 0 [110] _ k y [010] k x [100]  = 0,  < 0 [110] _ k y [010] k x [100]

18 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spin-dynamics in 2D systems with Rashba and Dresselhauss SO coupling For the same distance traveled along [1-10], the spin precesses by exactly the same angle. [110] _ _

19 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Similar wafer parameters to ours Persistent state spin helix verified by pump-probe experiments Weber et al. PRL 07

For arbitrary α, β spin-charge transport equation is obtained for diffusive regime For propagation on [1-10], the equations decouple in two blocks. Focus on the one coupling S x+ and S z : For Dresselhauss = 0, the equations reduce to Burkov, Nunez and MacDonald, PRB 70, (2004); Mishchenko, Shytov, Halperin, PRL 93, (2004) 20 The Spin-Charge Drift-Diffusion Transport Equations

21 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Spatial variation scale consistent with the one observed in SIHE Spin-helix state when α ≠ β

22 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Simple electrical measurement of out of plane magnetization InMnAs I F SO majority minority V Spin dependent “force” deflects like-spin particles ρ H =R 0 B ┴ +4π R s M ┴ Understanding the Hall signal in SIHE: Anomalous Hall Effect

23 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Anomalous Hall effect (scaling with ρ ) 37 Dyck et al PRB 2005 Material with dominant skew scattering mechanism Material with dominant scattering-independent mechanism Ohio State University GaMnAs Kotzler and Gil PRB 2005 Co films Edmonds et al APL 2003

24 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Intrinsic deflection Electrons have an “anomalous” velocity perpendicular to the electric field related to their Berry’s phase curvature which is nonzero when they have spin-orbit coupling. ~τ 0 or independent of impurity density Electrons deflect first to one side due to the field created by the impurity and deflect back when they leave the impurity since the field is opposite resulting in a side step. They however come out in a different band so this gives rise to an anomalous velocity through scattering rates times side jump. independent of impurity density Side jump scattering V imp (r) Skew scattering Asymmetric scattering due to the SO coupling of the electron or the impurity. Known as Mott scattering. ~1/n i V imp (r) Electrons deflect to the right or left as they are accelerated by an electric field ONLY because of the spin-orbit coupling in the periodic potential E SO coupled quasiparticles STRONG SPIN-ORBIT COUPLED REGIME (Δ so >ħ/τ)

25 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Side jump scattering from SO disorder Electrons deflect first to one side due to the field created by the impurity and deflect back when they leave the impurity since the field is opposite resulting in a side step. They however come out in a different band so this gives rise to an anomalous velocity through scattering rates times side jump. independent of impurity density The terms/contributions dominant in the strong SO couple regime are strongly reduced (quasiparticles not well defined due to strong disorder broadening). Other terms, originating from the interaction of the quasiparticles with the SO-coupled part of the disorder potential dominate. Better understood than the strongly SO couple regime WEAK SPIN-ORBIT COUPLED REGIME (Δ so <ħ/τ) Skew scattering from SO disorder ~1/n i

26 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Type (i) contribution much smaller in the weak SO coupled regime where the SO- coupled bands are not resolved, dominant contribution from type (ii) Crepieux et al PRB 01 Nozier et al J. Phys. 79 Two types of contributions: i)S.O. from band structure interacting with the field (external and internal) Bloch electrons interacting with S.O. part of the disorder Lower bound estimate of skew scatt. contribution AHE contribution to Spin-injection Hall effect

27 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Local spin-polarization → calculation of AHE signal Weak SO coupling regime → extrinsic skew-scattering term is dominant Lower bound estimate Spin-injection Hall effect: theoretical expectations

28 Nanoelectronics, spintronics, and materials control by spin-orbit coupling Further experimental tests of the observed SIHE

S. Datta, B. Das, Appl. Phys. Lett (1990). … works only - if channel is 1dimensional - or under Spin Helix conditions for 2D channel Comment 1: Datta-Das type device

SIHE Field Effect Transistor

31 Nanoelectronics, spintronics, and materials control by spin-orbit coupling SHE -1 B=0 spin current gives charge current Electrical detection AHE B=0 polarized charge current gives charge-spin current Electrical detection SHE B=0 charge current gives spin current Optical detection SIHE B=0 Optical injected polarized current gives charge current Electrical detection The spintronic Hall family

32 - electrical detection method for Spin current - large signal (comparable to AHE in metallic ferromagnets) - high spatial resolution (~ < 50nm) - nondestructive detection of spin WITHOUT magnetic elements - linear with degree of spin polarization - high temperature operation - first electrical detection of the Spin Helix (coherently precessing spins) - all electrical polarimeter (transfers degree of light polarization into an electrical signal) SUMMARY

Drift-Diffusion eqs. with magnetic field perpendicular to 110 and time varying spin-injection Spin Currents 2009 σ + (t) B Similar to steady state B=0 case, solve above equations with appropriate boundary conditions: resonant behavior around ω L and small shift of oscillation period Jing Wang, Rundong Li, SC Zhang, et al

Semiclassical Monte Carlo of SIHE Numerical solution of Boltzmann equation Spin-independent scattering: Spin-dependent scattering: phonons, remote impurities, interface roughness, etc. side-jump, skew scattering. AHE Realistic system sizes (  m). Less computationally intensive than other methods (e.g. NEGF). Spin Currents 2009

Single Particle Monte Carlo Spin Currents 2009 Spin-Dependent Semiclassical Monte Carlo  Temperature effects, disorder, nonlinear effects, transient regimes.  Transparent inclusion of relevant microscopic mechanisms affecting spin transport (impurities, phonons, AHE contributions, etc.).  Less computationally intensive than other methods(NEGF).  Realistic size devices.

Effects of B field: current set-up Spin Currents 2009 In-Plane magnetic field Out-of plane magnetic field