1 Graphs ORD DFW SFO LAX 802 1743 1843 1233 337 Many slides taken from Goodrich, Tamassia 2004.

Slides:



Advertisements
Similar presentations
Spring 2007Shortest Paths1 Minimum Spanning Trees JFK BOS MIA ORD LAX DFW SFO BWI PVD
Advertisements

Shortest Paths1 C B A E D F
CSC 213 – Large Scale Programming Lecture 27: Graph ADT.
CSC 213 Lecture 23: Shortest Path Algorithms. Weighted Graphs Each edge in weighted graph has numerical weight Weights can be distances, building costs,
CSC 213 ORD DFW SFO LAX Lecture 20: Graphs.
© 2004 Goodrich, Tamassia Graphs1 ORD DFW SFO LAX
1 Graphs: Concepts, Representation, and Traversal CSC401 – Analysis of Algorithms Lecture Notes 13 Graphs: Concepts, Representation, and Traversal Objectives:
Graphs1 Part-H1 Graphs ORD DFW SFO LAX
© 2004 Goodrich, Tamassia Shortest Paths1 Shortest Paths (§ 13.6) Given a weighted graph and two vertices u and v, we want to find a path of minimum total.
Graphs1 ORD DFW SFO LAX Graphs2 Outline and Reading Graphs (§6.1) Definition Applications Terminology Properties ADT Data structures.
Graphs1 ORD DFW SFO LAX Graphs2 Outline and Reading Graphs (§6.1) Definition Applications Terminology Properties ADT Data structures.
CSC311: Data Structures 1 Chapter 13: Graphs II Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
Shortest Paths1 C B A E D F
CSC311: Data Structures 1 Chapter 13: Graphs I Objectives: Graph ADT: Operations Graph Implementation: Data structures Graph Traversals: DFS and BFS Directed.
© 2004 Goodrich, Tamassia Shortest Paths1 C B A E D F
ECE669 L10: Graph Applications March 2, 2004 ECE 669 Parallel Computer Architecture Lecture 10 Graph Applications.
Lecture20: Graph IV Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Graphs – Shortest Path (Weighted Graph) ORD DFW SFO LAX
Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances,
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 Shortest Path Problem Topic 11 ITS033 – Programming & Algorithms C B A E D F Asst. Prof. Dr. Bunyarit Uyyanonvara IT Program,
Shortest Paths C B A E D F
Graphs Part 2. Shortest Paths C B A E D F
Graphs – ADTs and Implementations ORD DFW SFO LAX
Graphs Chapter 12.
Graphs Part 1. Outline and Reading Graphs (§13.1) – Definition – Applications – Terminology – Properties – ADT Data structures for graphs (§13.2) – Edge.
Graphs. Data Structure for Graphs. Graph Traversals. Directed Graphs. Shortest Paths. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013.
Graphs CSE 2011 Winter June Graphs A graph is a pair (V, E), where  V is a set of nodes, called vertices  E is a collection of pairs.
Spring 2007Graphs1 ORD DFW SFO LAX
GRAPHS 1. Outline 2  Undirected Graphs and Directed Graphs  Depth-First Search  Breadth-First Search.
Shortest Paths 1 Chapter 7 Shortest Paths C B A E D F
Lecture 16. Shortest Path Algorithms
1 Weighted Graphs CSC401 – Analysis of Algorithms Lecture Notes 16 Weighted Graphs Objectives: Introduce weighted graphs Present shortest path problems,
Data Structures and Algorithms1 Data Structures and algorithms (IS ZC361) Weighted Graphs – Shortest path algorithms – MST S.P.Vimal BITS-Pilani
Graphs Quebec Toronto Montreal Ottawa 449 km 255 km 200 km 545 km Winnipeg 2075 km 2048 km New York 596 km 790 km 709 km.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
CHAPTER 13 GRAPH ALGORITHMS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++, GOODRICH, TAMASSIA.
© 2010 Goodrich, Tamassia Shortest Paths1 C B A E D F
1 COMP9024: Data Structures and Algorithms Week Twelve: Graphs (II) Hui Wu Session 1, 2014
Graphs ORD SFO LAX DFW Graphs 1 Graphs Graphs
Graphs 10/24/2017 6:47 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Shortest Paths C B A E D F Shortest Paths
COMP9024: Data Structures and Algorithms
Graphs.
Graphs 5/14/ :46 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Shortest Paths C B A E D F Shortest Paths
Shortest Path 6/18/2018 4:22 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Shortest Paths C B A E D F Shortest Paths 1
Graphs 7/18/2018 7:39 AM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Graphs ORD SFO LAX DFW Graphs Graphs
Graphs ORD SFO LAX DFW Graphs Graphs
Shortest Paths C B A E D F Shortest Paths
Minimum Spanning Tree 11/3/ :04 AM Minimum Spanning Tree
Shortest Paths C B A E D F Shortest Paths
Shortest Paths C B A E D F
Graphs ORD SFO LAX DFW Graphs Graphs
Graphs.
Graphs.
Graphs ORD SFO LAX DFW Graphs Graphs
Shortest Paths C B A E D F Shortest Paths
Graphs CSE 2011 Winter November 2018.
Shortest Paths C B A E D F Shortest Paths
Chapter 13 Graph Algorithms
Graphs ORD SFO LAX DFW Graphs Graphs
Graph Algorithms shortest paths, minimum spanning trees, etc.
Graphs ORD SFO LAX DFW Graphs Graphs
Graphs 4/29/15 01:28:20 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Graphs ORD SFO LAX DFW /15/ :57 AM
Shortest Paths.
Weighted Graphs C B A E D F Sequences
Presentation transcript:

1 Graphs ORD DFW SFO LAX Many slides taken from Goodrich, Tamassia 2004

© 2004 Goodrich, Tamassia 2 Graphs A graph is a pair (V, E), where V is a set of nodes, called vertices (node=vertex) E is a collection of pairs of vertices, called edges Vertices and edges are positions and store elements Example: A vertex represents an airport and stores the three-letter airport code An edge represents a flight route between two airports and stores the mileage of the route ORD PVD MIA DFW SFO LAX LGA HNL

© 2004 Goodrich, Tamassia 3 Edge Types Directed edge ordered pair of vertices (u,v) first vertex u is the origin second vertex v is the destination e.g., a flight Undirected edge unordered pair of vertices (u,v) e.g., a flight route Directed graph all the edges are directed e.g., route network Undirected graph all the edges are undirected e.g., flight network ORDPVD flight AA 1206 ORDPVD 849 miles

© 2004 Goodrich, Tamassia 4 Applications Electronic circuits Printed circuit board Integrated circuit Transportation networks Highway network Flight network Computer networks Local area network Internet Web Databases Entity-relationship diagram

© 2004 Goodrich, Tamassia 5 Terminology End vertices (or endpoints) of an edge U and V are the endpoints of a Edges incident on a vertex a, d, and b are incident on V Adjacent vertices U and V are adjacent Degree of a vertex X has degree 5 Parallel edges h and i are parallel edges Self-loop j is a self-loop XU V W Z Y a c b e d f g h i j

© 2004 Goodrich, Tamassia 6 P1P1 Terminology (cont.) Path sequence of alternating vertices and edges begins with a vertex ends with a vertex each edge is preceded and followed by its endpoints Simple path path such that all its vertices and edges are distinct Examples P 1 =(V,b,X,h,Z) is a simple path P 2 =(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple XU V W Z Y a c b e d f g hP2P2

© 2004 Goodrich, Tamassia 7 Terminology (cont.) Cycle circular sequence of alternating vertices and edges each edge is preceded and followed by its endpoints Simple cycle cycle such that all its vertices and edges are distinct Examples C 1 =(V,b,X,g,Y,f,W,c,U,a,  ) is a simple cycle C 2 =(U,c,W,e,X,g,Y,f,W,d,V,a,  ) is a cycle that is not simple C1C1 XU V W Z Y a c b e d f g hC2C2

© 2004 Goodrich, Tamassia 8 Properties Notation n number of vertices m number of edges deg(v) degree of vertex v Property 1  v deg(v)  2m Proof: each edge is counted twice Property 2 In an undirected graph with no self-loops and no multiple edges m  n (n  1)  2 Proof: each vertex has degree at most (n  1) What is the bound for a directed graph? Example n  4 m  6 deg(v)  3

© 2004 Goodrich, Tamassia 9 Main Methods of the Graph ADT Vertices and edges are positions store elements Accessor methods endVertices(e): an array of the two endvertices of e opposite(v, e): the vertex opposite of v on e areAdjacent(v, w): true iff v and w are adjacent replace(v, x): replace element at vertex v with x replace(e, x): replace element at edge e with x Update methods insertVertex(o): insert a vertex storing element o insertEdge(v, w, o): insert an edge (v,w) storing element o removeVertex(v): remove vertex v (and its incident edges) removeEdge(e): remove edge e Iterator methods incidentEdges(v): edges incident to v vertices(): all vertices in the graph edges(): all edges in the graph

© 2004 Goodrich, Tamassia 10 Implementation of Graphs Vertex adjacency lists Adjacency matrix

© 2004 Goodrich, Tamassia 11 Example problem Store the airport flight graph Given an airport, output all airports that have direct flights Given an airport, output all airports that have flights with at most 1 connection Given two airports, find minimum number of hops needed to connect them

12 Shortest Paths C B A E D F

© 2004 Goodrich, Tamassia 13 Weighted Graphs In a weighted graph, each edge has an associated numerical value, called the weight of the edge Edge weights may represent, distances, costs, etc. Example: In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports ORD PVD MIA DFW SFO LAX LGA HNL

© 2004 Goodrich, Tamassia 14 Shortest Paths Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between u and v. Length of a path is the sum of the weights of its edges. Example: Shortest path between Providence and Honolulu Applications Internet packet routing Flight reservations Driving directions ORD PVD MIA DFW SFO LAX LGA HNL

© 2004 Goodrich, Tamassia 15 Shortest Path Properties Property 1: A subpath of a shortest path is itself a shortest path Property 2: There is a tree of shortest paths from a start vertex to all the other vertices Example: Tree of shortest paths from Providence ORD PVD MIA DFW SFO LAX LGA HNL

© 2004 Goodrich, Tamassia 16 Dijkstra’s Algorithm The distance of a vertex v from a vertex s is the length of a shortest path between s and v Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex s Assumptions: the graph is connected the edges are undirected the edge weights are nonnegative We grow a “cloud” of vertices, beginning with s and eventually covering all the vertices We store with each vertex v a label d(v) representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices At each step We add to the cloud the vertex u outside the cloud with the smallest distance label, d(u) We update the labels of the vertices adjacent to u

© 2004 Goodrich, Tamassia 17 Edge Relaxation Consider an edge e  (u,z) such that u is the vertex most recently added to the cloud z is not in the cloud The relaxation of edge e updates distance d(z) as follows: d(z)  min{d(z),d(u)  weight(e)} d(z)  75 d(u)  z s u d(z)  60 d(u)  z s u e e

© 2004 Goodrich, Tamassia 18 Example CB A E D F  C B A E D F C B A E D F C B A E D F

© 2004 Goodrich, Tamassia 19 Example (cont.) CB A E D F CB A E D F

© 2004 Goodrich, Tamassia 20 Dijkstra’s Algorithm A priority queue stores the vertices outside the cloud: Key: distance, Element: vertex n nlogn (priority heap queue) n nlogn (priority heap queue) Sum n (deg(n))=2m 2m 2mlogn (priority heap queue) Algorithm DijkstraDistances(G, s) Q  new heap-based priority queue for all v  G.vertices() if v  s setDistance(v, 0) else setDistance(v,  ) Q.insert(getDistance(v), v) while  Q.isEmpty() u  Q.removeMin() for all e= (z,u)  G.incidentEdges(u) /* relax edge e */ r  getDistance(u)  weight(e) if r  getDistance(z) setDistance(z,r) Recompute position of z in Q O(mlogn)

© 2004 Goodrich, Tamassia 21 Shortest Paths Tree Using the template method pattern, we can extend Dijkstra’s algorithm to return a tree of shortest paths from the start vertex to all other vertices We store with each vertex a third label: parent edge in the shortest path tree In the edge relaxation step, we update the parent label Algorithm DijkstraShortestPathsTree(G, s) … for all v  G.vertices() … setParent(v,  ) … for all e  G.incidentEdges(u) { relax edge e } z  G.opposite(u,e) r  getDistance(u)  weight(e) if r  getDistance(z) setDistance(z,r) setParent(z,e) Q.replaceKey(getLocator(z),r)

© 2004 Goodrich, Tamassia 22 Why It Doesn’t Work for Negative-Weight Edges If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud. CB A E D F Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance. C’s true distance is 1, but it is already in the cloud with d(C)=5!

© 2004 Goodrich, Tamassia 23 Other Graph issues Traversal depth-first Breadth-first Very hard (NP-complete) problems on graphs Coloring  Given a graph, can we assign one of three colors (say red, blue, or green) to each vertex, such that no adjacent vertices have the same color? Traveling salesman (Hamiltonian cycle)  path that travels through every vertex once, and winds up where it started