Development of a Community Hydrologic Information System Jeffery S. Horsburgh Utah State University David G. Tarboton Utah State University.

Slides:



Advertisements
Similar presentations
CUAHSI Observations Data Model A relational database stored in Access, PostgreSQL, SQLServer, …. Stores observation data made at points Access data through.
Advertisements

Some notes on CyberGIS in hydrology Ilya Zaslavsky Spatial Information Systems Lab San Diego Supercomputer Center UCSD TeraGrid CyberGIS Workshop, February.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
Sharing Hydrologic Data with the CUAHSI Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David.
This work is funded by the Inland Northwest Research Alliance INRA Constellation of Experimental Watersheds: Cyberinfrastructure to Support Publication.
ICEWATER: INRA Constellation of Experimental Watersheds Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S. Horsburgh, Utah State.
A Community Data Model for Hydrologic Observations Observations Data Model Schema ODM Data Source and Network SitesVariables ValuesMetadata Depth of snow.
Project Venue Little Bear River –Cache County, UT –5-20 km from Utah State University –Existing cyberinfra-structure from ongoing projects with EPA/USDA/USU/
Development of a Community Hydrologic Information System Support EAR CUAHSI HIS Sharing hydrologic data David Maidment (PI),
Linking HIS and GIS How to support the objective, transparent and robust calculation and publication of SWSI? Jeffery S. Horsburgh CUAHSI HIS Sharing hydrologic.
This work is funded by National Science Foundation Grant EAR Accessing and Sharing Data Using the CUAHSI Hydrologic Information System CUAHSI HIS.
CUAHSI HIS Data Services Project David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin (HIS Project Leader)
SENSORS, CYBERINFRASTRUCTURE, AND EXAMINATION OF HYDROLOGIC AND HYDROCHEMICAL RESPONSE IN THE LITTLE BEAR RIVER OBSERVATORY TEST BED Jeffery S. Horsburgh.
Components of an Integrated Environmental Observatory Information System Cyberinfrastructure to Support Publication of Water Resources Data Jeffery S.
This work was funded by the U.S. National Science Foundation under grant EAR Any opinions, findings and conclusions or recommendations expressed.
HydroServer A Platform for Publishing Space- Time Hydrologic Datasets Support EAR CUAHSI HIS Sharing hydrologic data Jeffery.
SENSORS, CYBERINFRASTRUCTURE, AND WATER QUALITY IN THE LITTLE BEAR RIVER Jeffery S. Horsburgh David K. Stevens, Amber Spackman Jones, David G. Tarboton,
Time Series Analyst An Internet Based Application for Viewing and Analyzing Environmental Time Series Jeffery S. Horsburgh Utah State University David.
SAN DIEGO SUPERCOMPUTER CENTER, UCSD SciR&D A SCALABLE SYSTEM FOR ONLINE ACCESS TO NATIONAL AND LOCAL REPOSITORIES OF HYDROLOGIC TIME SERIES Ilya Zaslavsky,
Two NSF Data Services Projects Rick Hooper, President Consortium of Universities for the Advancement of Hydrologic Science, Inc.
Using GIS in Creating an End-to- End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
Integrating Historical and Realtime Monitoring Data into an Internet Based Watershed Information System for the Bear River Basin Jeff Horsburgh David Stevens,
Introducing the CUAHSI Hydrologic Information System Desktop Application (HydroDesktop) and Open Development Community Jiří Kadlec, Daniel Ames, Teva Velupillai.
Deployment and Evaluation of an Observations Data Model Jeffery S Horsburgh David G Tarboton Ilya Zaslavsky David R. Maidment David Valentine
CUAHSI Hydrologic Information Systems and Web Services By David R. Maidment With support from many collaborators: Ilya Zaslavsky, David Valentine, Reza.
HIS Team and Collaborators University of Texas at Austin – David Maidment, Tim Whiteaker, Ernest To, Bryan Enslein, Kate Marney San Diego Supercomputer.
GIS at SDSC Domains: –From geology, environmental science, hydrology, ocean biodiversity, regional development, Katrina response, archaeology, to neuroscience.
SAN DIEGO SUPERCOMPUTER CENTER Developing a CUAHSI HIS Data Node, as part of Cyberinfrastructure for the Hydrologic Sciences David Valentine Ilya Zaslavsky.
An End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David K. Stevens, David G. Tarboton, Nancy O. Mesner, Amber Spackman.
A Services Oriented Architecture for Water Resources Data David R. Maidment Center for Research in Water Resources University of Texas at Austin EPA Storet.
Tools for Publishing Environmental Observations on the Internet Justin Berger, Undergraduate Researcher Jeff Horsburgh, Faculty Mentor David Tarboton,
Using HydroServer Organize, Manage, and Publish Your Data Support EAR CUAHSI HIS Sharing hydrologic data Jeffery S. Horsburgh.
Over-allocation to irrigation Bushfire recovery impacts Expanding plantations Drying and warming climate Uncapped groundwater extraction Expanding farm.
A Services Oriented Architecture for Water Resources Data David R. Maidment Center for Research in Water Resources University of Texas at Austin.
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
Ocean Sciences What is CUAHSI? CUAHSI – Consortium of Universities for the Advancement of Hydrologic Science, Inc Formed in 2001 as a legal entity Program.
About CUAHSI The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is an organization representing 120+ universities.
SAN DIEGO SUPERCOMPUTER CENTER, UCSD SciR&D Hydrologic Information System Services Architecture Collaborative project: UTAustin (D. R. Maidment) + SDSC.
Exercises: Organizing, Loading, and Managing Point Observations Using HydroServer Support EAR CUAHSI HIS Sharing hydrologic data
Data Interoperability in the Hydrologic Sciences The CUAHSI Hydrologic Information System David Tarboton, David Maidment, Ilya Zaslavsky, Dan Ames, Jon.
CUAHSI Hydrologic Information System an introduction Ilya Zaslavsky Director, Spatial Information Systems Lab San Diego Supercomputer Center University.
Advancing an Information Model for Environmental Observations Jeffery S. Horsburgh Anthony Aufdenkampe, Richard P. Hooper, Kerstin Lehnert, Kim Schreuders,
Publishing Observations Data: from ODM to HIS Central.
Hydrologic Information System for the Nation David R. Maidment Director Center for Research in Water Resources, University of Texas at Austin.
CUAHSI, WATERS and HIS by Richard P. Hooper, David G. Tarboton and David R. Maidment.
Overview of CUAHSI HIS Version 1.1 David R. Maidment Director, Center for Research in Water Resources University of Texas at Austin CUAHSI Biennial Science.
CUAHSI Hydrologic Information Systems David R. Maidment Center for Research in Water Resources University of Texas at Austin and Ilya Zaslavsky, David.
The CUAHSI Community Hydrologic Information System Jeffery S. Horsburgh Utah Water Research Laboratory Utah State University CUAHSI HIS Sharing hydrologic.
Bringing Water Data Together David R. Maidment Center for Research in Water Resources University of Texas at Austin Texas Water Summit San Antonio Tx,
Hydrologic Information System GIS – the water environment Water Resources – the water itself CUAHSI HIS: NSF-supported collaborative project: UT Austin.
CUAHSI HIS Features of Observations Data Model. NWIS ArcGIS Excel NCAR Trends NAWQA Storet NCDC Ameriflux Matlab AccessSAS Fortran Visual Basic C/C++
CUAHSI Hydrologic Information Systems David R. Maidment and Ernest To Center for Research in Water Resources, University of Texas at Austin Hydrosystems.
The CUAHSI Observations Data Model Jeff Horsburgh David Maidment, David Tarboton, Ilya Zaslavsky, Michael Piasecki, Jon Goodall, David Valentine,
Services-Oriented Architecture for Water Data David R. Maidment Fall 2009.
1 CUAHSI Web Services and Hydrologic Information Systems By David R. Maidment, University of Texas at Austin Collaborators: Ilya Zaslavsky and Reza Wahadj,
Hydroinformatics Lecture 15: HydroServer and HydroServer Lite The CUAHSI HIS is Supported by NSF Grant# EAR CUAHSI HIS Sharing hydrologic data.
Developing a community hydrologic information system David G Tarboton David R. Maidment (PI) Ilya Zaslavsky Michael Piasecki Jon Goodall
The CUAHSI Hydrologic Information System Spatial Data Publication Platform David Tarboton, Jeff Horsburgh, David Maidment, Dan Ames, Jon Goodall, Richard.
Hydroinformatics Lecture: HydroServer .NET/PHP
Using GIS in Creating an End-to-End System for Publishing Environmental Observations Data Jeffery S. Horsburgh David G. Tarboton, David R. Maidment, Ilya.
Developing a Community Hydrologic Information System
Sharing Hydrologic Data with the CUAHSI* Hydrologic Information System
The CUAHSI Hydrologic Information System and NHD Plus A Services Oriented Architecture for Water Resources Data David G Tarboton David R. Maidment (PI)
Jeffery S. Horsburgh Utah State University
The CUAHSI Hydrologic Information System Service Oriented Architecture for Water Resources CUAHSI HIS Sharing hydrologic data Support.
Lecture 8 Database Implementation
CUAHSI HIS Sharing hydrologic data
Hydroinformatics Lecture 15: HydroServer (and HydroServer Lite)
Services-Oriented Architecture for Water Data
Space, Time and Variables in Hydrology
Presentation transcript:

Development of a Community Hydrologic Information System Jeffery S. Horsburgh Utah State University David G. Tarboton Utah State University

Hydrologic Science Hydrologic conditions (Fluxes, flows, concentrations) Hydrologic Process Science (Equations, simulation models, prediction) Hydrologic Information Science (Observations, data models, visualization Hydrologic environment (Dynamic earth) Physical laws and principles (Mass, momentum, energy, chemistry) It is as important to represent hydrologic environments precisely with data as it is to represent hydrologic processes with equations

Rainfall & Snow Water quantity and quality Remote sensing Water Data Modeling Meteorology Soil water

Provide access to multiple heterogeneous data sources simultaneously, regardless of semantic or structural differences between them Objective NWIS NARR NAWQA NAM-12 request request return return What we are doing now … Slide from Michael Piasecki, Drexel University

What we would like to do ….. NWIS NAWQA NARR generic request GetValues GetValues ODM Slide from Michael Piasecki, Drexel University CUAHSI HIS

CUAHSI Hydrologic Data Access System A common data window for accessing, viewing and downloading hydrologic information USGSNASANCDCEPANWSObservatory Data

WaterOneFlow Web Services Data accessthrough web services Data storage through web services Downloads Uploads Observatory data servers CUAHSI HIS data servers 3 rd party data servers e.g. USGS, NCDC GIS Matlab IDL Splus, R Excel Programming (Fortran, C, VB) Web services interface Hydrologic Data Access System Website Portal and Map Viewer Information input, display, query and output services Preliminary data exploration and discovery. See what is available and perform exploratory analyses HTML -XML WSDL - SOAP ODM

Web Services A set of protocols that together provide a mechanism for machine-to-machine communication over the Internet Advantages –Interoperability across operating systems and programming languages (XML based) –Application developers interact with web services similar to the way they interact with any other software library within a programming environment

NWIS ArcGIS Excel NCAR Unidata NASA Storet NCDC Ameriflux Matlab AccessJava Fortran Visual Basic C/C++ Some operational services CUAHSI Web Services Data Sources Applications Extract Transform Load

Local Data No efficient online data delivery system Disparate file formats Different types, frequencies, etc. ODM with Web Services ODM with Web Services XML Data Mediation Data Consumption and Analysis Excel Files Excel Files Acces s Files Acces s Files Text Files Text Files Sensor Data Local Data Sources With Multiple Formats Excel Files Excel Files Acces s Files Acces s Files Text Files Text Files Sensor Data Local Data Sources With Multiple Formats Data Consumption and Analysis

CUAHSI Observations Data Model A relational database at the single observation level (atomic model) Stores observation data made at points Metadata for unambiguous interpretation Traceable heritage from raw measurements to usable information Standard format for data sharing Cross dimension retrieval and analysis Streamflow Flux Tower Data Precipitation & Climate Groundwater Levels Water Quality Soil Moisture Data ODM

ODM and HIS in The Little Bear River Test Bed Integration of Sensor Data With HIS Observations Database (ODM) Base Station Computer(s) Data Processing Applications Internet Telemetry Network Environmental Sensors Data discovery, visualization, analysis, and modeling through Internet enabled applications Programmer interaction through web services Internet Workgroup HIS Tools Workgroup HIS Server

Managing Data Within ODM - ODM Tools Load – import existing data directly to ODM Query and export – export data series and metadata Visualize – plot and summarize data series Edit – delete, modify, adjust, interpolate, average, etc.

Bayesian Networks to construct water quality measures from surrogate sensor signals to provide high frequency estimates of water quality and loading Site specific correlations between sensor signals and other water quality variables Sensors, data collection, and telemetry network Bayesian Networks to control monitoring system, triggering sampling for storm events and base flow CUAHSI HIS ODM – central storage and management of observations data End result: high frequency estimates of nutrient concentrations and loadings Little Bear River Integrated Monitoring System

Data Models: Structured data sets to facilitate data integrity and effective sharing and analysis. - Standards - Metadata - Unambiguous interpretation Analysis: Tools to provide windows into the database to support visualization, queries, analysis, and data driven discovery. Models: Numerical implementations of hydrologic theory to integrate process understanding, test hypotheses and provide hydrologic forecasts. Conclusion Advancement of water science is critically dependent on integration of water information Databases Analysis Models ODM Web Services