cs5764: Information Visualization Chris North

Slides:



Advertisements
Similar presentations
Multi-Dimensional Data Visualization
Advertisements

The visual display of quantitative data Joyce Chapman, Consultant for Communications & Data Analysis State Library of North Carolina,
Sep 23, 2013 IAT Data ______________________________________________________________________________________ SCHOOL OF INTERACTIVE ARTS + TECHNOLOGY.
Visualisasi Informasi
CS 5764 Information Visualization Dr. Chris North Purvi Saraiya GTA.
Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases Presented by Darren Gates for ICS 280.
Visualization Basics CS 5764: Information Visualization Chris North.
PaperLens Understanding Research Trends in Conferences using PaperLens Work by Bongshin Lee, Mary Czerwinski, George Robertson, and Benjamin Bederson Presented.
Multiscale Visualization Using Data Cubes Chris Stolte, Diane Tang, Pat Hanrahan Stanford University Information Visualization October 2002 Boston, MA.
The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus + Context Visualization for Tabular Information R. Rao and S. K.
Infovis and data george, laura, tjerk.
CS 5764 Information Visualization Dr. Chris North.
CS 5764 Information Visualization Dr. Chris North GTA: Beth Yost.
Table Lens From papers 1 and 2 By Tichomir Tenev, Ramana Rao, and Stuart K. Card.
Table Lens Introduction to the Table Lens concept Table Lens Implementation Projected Usage Scenarios Usage Comparison with Splus Critical Analysis.
Information Visualization Chapter 1 - Continued. Reference Model Visualization: Mapping from data to visual form Raw DataData Tables Visual Structures.
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
CS 235: User Interface Design November 12 Class Meeting Department of Computer Science San Jose State University Fall 2014 Instructor: Ron Mak
Chapter 1 Descriptive Analysis. Statistics – Making sense out of data. Gives verifiable evidence to support the answer to a question. 4 Major Parts 1.Collecting.
NSW Curriculum and Learning Innovation Centre Tinker with Tinker Plots Elaine Watkins, Senior Curriculum Officer, Numeracy.
NERCOMP Workshop, Dec. 2, 2008 Information Visualization: the Other Half of Data Analysis Dr. Matthew Ward Computer Science Department Worcester Polytechnic.
Information Design and Visualization
CMPT 880/890 Writing labs. Outline Presenting quantitative data in visual form Tables, charts, maps, graphs, and diagrams Information visualization.
1 Adapting the TileBar Interface for Visualizing Resource Usage Session 602 Adapting the TileBar Interface for Visualizing Resource Usage Session 602 Larry.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Designing the User Interface: Strategies for Effective Human-Computer.
Fall 2002CS/PSY Information Visualization Picture worth 1000 words... Agenda Information Visualization overview  Definition  Principles  Examples.
Copyright © 2005, Pearson Education, Inc. Slides from resources for: Designing the User Interface 4th Edition by Ben Shneiderman & Catherine Plaisant Slides.
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
VisDB: Database Exploration Using Multidimensional Visualization Maithili Narasimha 4/24/2001.
C. Ahlberg & B. Shneiderman (1994)
CS3041 – Final week Today: Searching and Visualization Friday: Software tools –Study guide distributed (in class only) Monday: Social Imps –Study guide.
Information Visualization 2: Overview and Navigation Chris North cs3724: HCI.
Polaris: A System for Query, Analysis and Visualization of Multi- dimensional Relational Database by Chris Stolte & Pat Hanrahan presenter Andrew Trieu.
Information Visualization Chris North cs3724: HCI.
Tight Coupling of Dynamic Query Filters with Starfield Displays / Spotfire.net Desktop By Chris Ahlberg and Ben Shneiderman / Spotfire Inc. IC280 5/9/02.
CS 235: User Interface Design April 30 Class Meeting Department of Computer Science San Jose State University Spring 2015 Instructor: Ron Mak
SBD: Information Design
Visual Overview Strategies cs5984: Information Visualization Chris North.
Review Chris North cs3724: HCI. Midterm Topics Scenario-based design: (ch 1-4) SBD background –metrics, tradeoffs, scenarios Requirements analysis –Field.
INFORMATION VISUALIZATION
Recap Iterative and Combination of Data Visualization Unique Requirements of Project Avoid to take much Data Audience of Problem.
Visual Overview Strategies cs5984: Information Visualization Chris North.
Statistical Fundamentals: Using Microsoft Excel for Univariate and Bivariate Analysis Alfred P. Rovai Charts Overview PowerPoint Prepared by Alfred P.
Multi-Dimensional Data Visualization cs5984: Information Visualization Chris North.
Information Visualization: Navigation Chris North cs3724: HCI.
Visualization Design Principles cs5984: Information Visualization Chris North.
Table Lens Paper – The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus + Context Visualization for Tabular Information.
Information Visualization Course
Information Visualization: Navigation
Visualizing Data and Communicating Information
Algorithms and Problem Solving
IAT 355 Data + Multivariate Visualization
cs5764: Information Visualization Chris North
Information Visualization 2: Overview and Navigation
Information Visualization Picture worth 1000 words...
CSc4730/6730 Scientific Visualization
An Evolutional Model for Operation-driven Visualization Design
cs5984: Information Visualization Chris North
CSc4730/6730 Scientific Visualization
Information Design and Visualization
cs5984: Information Visualization Chris North
Information Visualization 2: Overview and Navigation
Information Visualization (Part 1)
Algorithms and Problem Solving
Welcome!.
CHAPTER 7: Information Visualization
Group 9 – Data Mining: Data
Information Visualization
CHAPTER 14: Information Visualization
Comp 15 - Usability & Human Factors
Presentation transcript:

cs5764: Information Visualization Chris North Visualization Basics cs5764: Information Visualization Chris North

Review What is the purpose of visualization? How do we accomplish that?

Basic Visualization Model

(learning, knowledge extraction) Goal Data Data transfer Insight (learning, knowledge extraction)

Method Data transfer Data Insight ~Map-1: visual → data insight Map: data → visual ~Map-1: visual → data insight Visualization Visual transfer (communication bandwidth)

Visual Mappings Visual Mappings must be: Data Computable (math) visual = f(data) Comprehensible (invertible) data = f-1(visual) Creative! Map: data → visual Visualization

PolarEyes

Visualization Pipeline task Raw data (information) Data tables Visual structures Visualization (views) Data transformations Visual mappings View transformations User interaction

Data Table: Canonical data model Visualization requires structure, data model (All?) information can be modeled as data tables

Data Table Attributes (aka: dimensions, variables, fields, columns, …) Values Data Types: Quantitative Ordinal Categorical Nominal Items (aka: tuples, cases, records, data points, rows, …)

Attributes Dependent variables (measured) Independent variables (controlled) ID Year Length Title 1986 128 Terminator 1 1993 120 T2 2 2003 142 T3 …

Data Transformations Data table operations: Selection Projection Aggregation r = f(rows) c = f(cols) Join Transpose Sort …

Visual Structure Spatial substrate Visual marks Visual properties

Visual Mapping: Step 1 Map: data items  visual marks Visual marks: Points Lines Areas Volumes Glyphs

Visual Mapping: Step 2 Map: data items  visual marks Map: data attributes  visual properties of marks Visual properties of marks: Position, x, y, z Size, length, area, volume Orientation, angle, slope Color, gray scale, texture Shape Animation, time, blink, motion

Example: Spotfire Film database Year  x Length  y Popularity  size Subject  color Award?  shape

Visual Mapping Definition Language Films  dots Year  x Length  y Popularity  size Subject  color Award?  shape

E.g. Linear Encoding year  x x – xmin year – yearmin xmax – xmin yearmax – yearmin yearmin xmin year x yearmax xmax =

The Simple Stuff Univariate Bivariate Trivariate

Univariate Dot plot Bar chart (item vs. attribute) Tukey box plot Histogram

Bivariate Scatterplot

Trivariate 3D scatterplot, spin plot 2D plot + size (or color…)

Visualization Design

HCI Design Process Iterative, progressive refinement Analyze Design Evaluate Iterative, progressive refinement

Analyze Data: Users: … Existing solutions (literature review) Information types (multiD, tree, …) Scalability**** Semantics Users: Tasks Expertise … Existing solutions (literature review)

Data Scalability # of attributes (dimensionality) # of items Value range (e.g. bits/value)

Visualization can do this! User Tasks Easy stuff: Reduce to only 1 data item or value Stats: Min, max, average, % Search: known item Hard stuff: Require seeing the whole Patterns: distributions, trends, frequencies, structures Outliers: exceptions Relationships: correlations, multi-way interactions Tradeoffs: combined min/max Comparisons: choices (1:1), context (1:M), sets (M:M) Clusters: groups, similarities Anomalies: data errors Paths: distances, ancestors, decompositions, … Forms can do this Visualization can do this!

Design the Visualization Pipeline task Raw data (information) Data tables Visual structures Visualization (views) Data transformations Visual mappings View transformations User interaction

Design Methods: Artifacts: Optimize tasks on data, scenarios Apply principles Build on existing solutions Brainstorm Artifacts: Paper sketches Mockups (powerpoint, macromedia,…) Prototypes (VB, …) Implementation

HCI UI Evaluation Metrics User learnability: Learning time Retention time User performance: *** Performance time Success rates Error rates, recovery Clicks, actions User satisfaction: Surveys Not “user friendly” Measure while users perform benchmark tasks

Some Visualization Design Principles

Effectiveness & Expressiveness (Mackinlay) Effectiveness Cleveland’s rules Expressiveness Encodes all data Encodes only the data

Ranking Visual Properties Position Length Angle, Slope Area, Volume Color Design guideline: Map more important data attributes to more accurate visual attributes (based on user task) Increased accuracy for quantitative data (Cleveland and McGill) Categorical data: Position Color, Shape Length Angle, slope Area, volume (Mackinlay hypoth.)

Example Hard drives for sale: price ($), capacity (MB), quality rating (1-5)

Pie vs. Bar Data: population of the 50 states Pie: state and pop overloaded on circumf. Bar: state on x, pop on y

Stacked Bar AK AL AR CA CO …

Eliminate “Chart Junk” (Tufte) How much “ink” is used for non-data? Reclaim empty space (% screen empty) Attempt simplicity (e.g. am I using 3d just for coolness?)

Increase Data Density Calculate data/pixel (Tufte) Calculate data/pixel “A pixel is a terrible thing to waste.” (Shneiderman)

Interaction Approach Direct Manipulation (Shneiderman) Visual representation Rapid, incremental, reversible actions Pointing instead of typing Immediate, continuous feedback

Information Visualization Mantra (Shneiderman) Overview first, zoom and filter, then details on demand

Cost of Knowledge / Info Foraging (Card, Piroli, et al.) Frequently accessed info should be quick At expense of infrequently accessed info Bubble up “scent” of details to overview

The “Insight” Factor Avoid the temptation to design a form-based search engine More tasks than just “search” How do I know what to “search” for? What if there’s something better that I don’t know to search for? Hides the data

Break out of the Box Resistance is not futile! Creativity; Think bigger, broader Does the design help me explore, learn, understand? Reveal the data

Class Motto Show me the data!

How (not) to Lie with Visualization

Information Types Multi-dimensional: databases,… 1D: timelines,… 2D: maps,… 3D: volumes,… Hierarchies/Trees: directories,… Networks/Graphs: web, communications,… Document collections: digital libraries,…