Penn ESE535 Spring 2009-- DeHon 1 ESE535: Electronic Design Automation Day 4: February 25, 2009 Two-Level Logic-Synthesis.

Slides:



Advertisements
Similar presentations
FUNCTION OPTIMIZATION Switching Function Representations can be Classified in Terms of Levels Number of Levels, k, is Number of Unique Boolean (binary)
Advertisements

Glitches & Hazards.
CSEE 4823 Advanced Logic Design Handout: Lecture #2 1/22/15
CS370 – Spring 2003 Programmable Logic Devices PALs/PLAs.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 14: March 19, 2014 Compute 2: Cascades, ALUs, PLAs.
ECE C03 Lecture 31 Lecture 3 Two-Level Logic Minimization Algorithms Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
Quine-McCluskey (Tabular) Minimization  Two step process utilizing tabular listings to:  Identify prime implicants (implicant tables)  Identify minimal.
ECE C03 Lecture 21 Lecture 2 Two Level Minimization Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
ECE 331 – Digital System Design
Logic Synthesis 2 Outline –Two-Level Logic Optimization –ESPRESSO Goal –Understand two-level optimization –Understand ESPRESSO operation.
EDA (CS286.5b) Day 15 Logic Synthesis: Two-Level.
EDA (CS286.5b) Day 17 Sequential Logic Synthesis (FSM Optimization)
Chapter 3 Simplification of Switching Functions
Logic Synthesis Outline –Logic Synthesis Problem –Logic Specification –Two-Level Logic Optimization Goal –Understand logic synthesis problem –Understand.
ENEE 6441 On Quine-McCluskey Method > Goal: find a minimum SOP form > Why We Need to Find all PIs? f(w,x,y,z) = x’y’ +wxy+x’yz’+wy’z = x’y’+x’z’+wxy+wy’z.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 7: February 11, 2008 Static Timing Analysis and Multi-Level Speedup.
Give qualifications of instructors: DAP
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 16: March 23, 2009 Covering.
Gate Logic: Two Level Canonical Forms
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 12: March 2, 2009 Sequential Optimization (FSM Encoding)
Contemporary Logic Design Two-Level Logic © R.H. Katz Transparency No. 4-1 Chapter #2: Two-Level Combinational Logic Section 2.3, Switches and Tools.
ECE Synthesis & Verification 1 ECE 667 ECE 667 Synthesis and Verification of Digital Systems Exact Two-level Minimization Quine-McCluskey Procedure.
ECE 667 Synthesis and Verification of Digital Systems
PLAs Programmable Logic Arrays
بهينه سازي با نقشة کارنو Karnaugh Map. 2  Method of graphically representing the truth table that helps visualize adjacencies 2-variable K-map 3-variable.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 15: March 18, 2009 Static Timing Analysis and Multi-Level Speedup.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 12: February 21, 2007 Compute 2: Cascades, ALUs, PLAs.
Courtesy RK Brayton (UCB) and A Kuehlmann (Cadence) 1 Logic Synthesis Two-Level Minimization I.
Two Level Logic Optimization. Two-Level Logic Minimization PLA Implementation Ex: F 0 = A + B’C’ F 1 = AC’ + AB F 2 = B’C’ + AB product term AB, AC’,
2-Level Minimization Classic Problem in Switching Theory
Department of Computer Engineering
1 © 2015 B. Wilkinson Modification date: January 1, 2015 Designing combinational circuits Logic circuits whose outputs are dependent upon the values placed.
Quine-McCluskey (Tabular) Minimization Two step process utilizing tabular listings to: Identify prime implicants (implicant tables) Identify minimal PI.
Courtesy RK Brayton (UCB) and A Kuehlmann (Cadence) 1 Logic Synthesis Multi-Valued Logic.
2-Level Minimization Classic Problem in Switching Theory Tabulation Method Transformed to “Set Covering Problem” “Set Covering Problem” is Intractable.
Two-Level Simplification Approaches Algebraic Simplification: - algorithm/systematic procedure is not always possible - No method for knowing when the.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 19: April 6, 2015 Two-Level Logic-Synthesis.
Two Level and Multi level Minimization
UM EECS 270 Spring 2011 – Taken from Dr.Karem Sakallah Logic Synthesis: From Specs to Circuits Implementation Styles –Random –Regular Optimization Criteria.
Two Level Networks. Two-Level Networks Slide 2 SOPs A function has, in general many SOPs Functions can be simplified using Boolean algebra Compare the.
2-1 Introduction Gate Logic: Two-Level Simplification Design Example: Two Bit Comparator Block Diagram and Truth Table A 4-Variable K-map for each of the.
CALTECH CS137 Fall DeHon 1 CS137: Electronic Design Automation Day 4: October 5, 2005 Two-Level Logic-Synthesis.
Chapter 2 Two- Level Combinational Logic. Chapter Overview Logic Functions and Switches Not, AND, OR, NAND, NOR, XOR, XNOR Gate Logic Laws and Theorems.
Test Slide SAT MCAT GRE. CSE 370 Spring 2006 Introduction to Digital Design Lecture 5: Canonical Forms Last Lecture Logic Gates Different Implementations.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 20: April 8, 2015 Sequential Optimization (FSM Encoding)
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 23: April 20, 2015 Static Timing Analysis and Multi-Level Speedup.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 2: January 20, 2010 Universality, Gates, Logic Work Preclass Exercise.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 15: March 4, 2002 Two-Level Logic-Synthesis.
1 Implicant Expansion Methods Used in The BOOM Minimizer Petr Fišer, Jan Hlavička Czech Technical University, Karlovo nám. 13, Prague 2
1 COMP541 Combinational Logic - 3 Montek Singh Jan 21, 2015.
Penn ESE534 Spring DeHon 1 ESE534: Computer Organization Day 2: January 18, 2012 Universality, Gates, Logic Work Preclass Exercise.
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 6: January 26, 2004 Sequential Optimization (FSM Encoding)
Digital Logic (Karnaugh Map). Karnaugh Maps Karnaugh maps (K-maps) are graphical representations of boolean functions. One map cell corresponds to a row.
Boolean Functions 1 ECE 667 ECE 667 Synthesis and Verification of Digital Circuits Boolean Functions Basics Maciej Ciesielski Univ.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 10: January 31, 2003 Compute 2:
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 18: March 25, 2013 Two-Level Logic-Synthesis.
ECE 301 – Digital Electronics Minimizing Boolean Expressions using K-maps, The Minimal Cover, and Incompletely Specified Boolean Functions (Lecture #6)
CALTECH CS137 Winter DeHon CS137: Electronic Design Automation Day 17: March 11, 2002 Sequential Optimization (FSM Encoding)
CBSSS 2002: DeHon Universal Programming Organization André DeHon Tuesday, June 18, 2002.
ICS 252 Introduction to Computer Design Lecture 8 Winter 2004 Eli Bozorgzadeh Computer Science Department-UCI.
CS137: Electronic Design Automation
Plotting functions not in canonical form
Synthesis of Two Level Circuits
ECE 331 – Digital System Design
CSE 370 – Winter 2002 – Logic minimization - 1
EECS150 - Digital Design Lecture 7 - Boolean Algebra II
ECB2212-Digital Electronics
ESE535: Electronic Design Automation
ECE 331 – Digital System Design
CS137: Electronic Design Automation
Presentation transcript:

Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 4: February 25, 2009 Two-Level Logic-Synthesis

Penn ESE535 Spring DeHon 2 Today Two-Level Logic Optimization –Problem –Definitions –Basic Algorithm: Quine-McClusky –Improvements

Penn ESE535 Spring DeHon 3 Problem Given: Expression in combinational logic Find: Minimum (cost) sum-of-products expression Ex. –Y=a*b*c + a*b*/c + a*/b*c –Y=a*b + a*c

Penn ESE535 Spring DeHon 4 EDA Use Minimum size PLA, PAL, … –Programmable Logic Array –Programmable Array Logic Minimum number of gates for two-level implementation Starting point for multi-level optimization

Penn ESE535 Spring DeHon 5 Programmable Array Logic (PLAs)

Penn ESE535 Spring DeHon 6 PLA Directly implement flat (two-level) logic –O=a*b*c*d + !a*b*!d + b*!c*d Exploit substrate properties allow wired-OR

Penn ESE535 Spring DeHon 7 Wired-or Connect series of inputs to wire Any of the inputs can drive the wire high

Penn ESE535 Spring DeHon 8 Wired-or Obvious Implementation with Transistors

Penn ESE535 Spring DeHon 9 Programmable Wired-or Use some memory function to programmable connect (disconnect) wires to OR Fuse:

Penn ESE535 Spring DeHon 10 Programmable Wired-or Memory configurable PLA model

Penn ESE535 Spring DeHon 11 Diagram Wired-or

Penn ESE535 Spring DeHon 12 Wired-or array Build into array –Compute many different or functions from set of inputs

Penn ESE535 Spring DeHon 13 Combined or-arrays to PLA Combine two or (nor) arrays to produce PLA (or-and / and-or array)

Penn ESE535 Spring DeHon 14 PLA Can implement each and on single line in first array Can implement each or on single line in second array Strictly speaking: or in first term and in second, but with both polarities of inputs, can invert so is and-or.

Penn ESE535 Spring DeHon 15 Nanowire PLA

Penn ESE535 Spring DeHon 16 PLA and PAL PAL = Programmable Array Logic PAL has fixed AND plane.

Penn ESE535 Spring DeHon 17 …back to optimization…

Penn ESE535 Spring DeHon 18 EDA Use for 2-level Logic Min. Minimum size PAL, PLA, … –Programmable Logic Array –Programmable Array Logic Minimum number of gates for two-level implementation Starting point for multi-level optimization

Penn ESE535 Spring DeHon 19 Complexity Set covering problem –NP-hard

Penn ESE535 Spring DeHon 20 Cost PLA/PAL – to first order costs is: –number of product terms Abstract (mis, sis) –{multilevel,sequential} interactive synthesis –number of literals cost(y=a*b+a*/c )=4 General (simple, multi-level) –  cost(product-term) e.g. nand2=4, nand3=5,nand4=6…

Penn ESE535 Spring DeHon 21 Terminology (1) Literals -- a, /a, b, /b, …. –Qualified, single inputs Minterms -- –full set of literals covering one input case –in y=a*b+a*c a*b*c a*/b*c

Penn ESE535 Spring DeHon 22 Terminology (2) Cube: –product covering one or more minterms –Y=a*b+a*c –cubes: a*b*c abc a*b ab a*c ac

Penn ESE535 Spring DeHon 23 Terminology (3) Cover: –set of cubes –sum products –{abc, a/bc, ab/c} –{ab,ac}

Penn ESE535 Spring DeHon 24 Truth Table Also represent function a b c y a b c y Specify on-set only

Penn ESE535 Spring DeHon 25 Cube/Logic Specification Canonical order for variables Use {0,1,-} to indicate input appearance in cube 0  inverted abc  not inverted a/bc  not present ac 1-1 a b c y

Penn ESE535 Spring DeHon 26 In General Three sets: –on-set (must be set to one by cover) –off-set (must be set to zero by cover) –don’t care set (can be zero or one) Don’t Cares –allow freedom in covering (reduce cost) –arise from cases where value doesn’t matter e.g. outputs in non-existent FSM state data bus value when not driving bus

Penn ESE535 Spring DeHon 27 Multiple Outputs a b y x a b y x o Truth Table:Convert to single-output problem On-set for result

Penn ESE535 Spring DeHon 28 Multiple Outputs Can reduce to single output case –write equations on inputs and each output with onset for relation being true –after cover remove literals associated with outputs

Penn ESE535 Spring DeHon 29 Multiple Outputs Could Optimize separately By optimizing together –Maximize sharing of cubes/product-terms

Penn ESE535 Spring DeHon 30 Multiple Outputs Consider: –X=/a/b+ab+ac –Y=/bc Trivial solution has 4 product terms

Penn ESE535 Spring DeHon 31 Multiple Outputs Consider: –X=/a/b+ab+ac –Y=/bc Now read off cover: –Y=/bc –A=/a/b/c+/bc+ab =/a/b+/bc+ab Only need 3 product terms (versus 4 w/ no sharing)

Penn ESE535 Spring DeHon 32 Prime Implicants Implicant -- cube in on-set – (not entirely in don’t-care set) Prime Implicant -- implicant, not contained in any other cube –for y=a*b+a*c a*b is a prime implicant a*b*c is not a prime implicant (contained in ab, ac) –I.e. largest cube still in on-set (on+dc-sets)

Penn ESE535 Spring DeHon 33 Prime Implicants Minimum cover will be made up of primes –less products if cover more –less literals in prime than contained cubes Necessary but not sufficient that minimum cover contain only primes –y=ab+ac+b/c –y=ac+b/c Number of PI’s can be exponential in input size –more than minterms, even! –Not all PI’s will be in optimum cover

Penn ESE535 Spring DeHon 34 Restate Goal Goal in terms of PIs –Find minimum size set of PIs which cover the on-set.

Penn ESE535 Spring DeHon 35 Essential Prime Implicants Prime Implicant which contains a minterm not covered by any other PI –Essential PI must occur in any cover –y=ab+ac+b/c –ab –ac –b/c * essential (only 101) * essential (only 010)

Penn ESE535 Spring DeHon 36 Computing Primes Start with minterms –for on-set and dc-set merge pairs (distance one apart) for each pair merged, –mark source cubes as covered repeat merging for resulting cube set –until no more merging possible retain all unmarked cubes which aren’t entirely in dc-set

Penn ESE535 Spring DeHon 37 Compute Prime Example

Penn ESE535 Spring DeHon 38 Compute Prime Example , , , , , , , , , ,

Penn ESE535 Spring DeHon 39 Compute Prime Example , , , , , , , , , , /b/c/d /abd bcd a/b ac 0, , , , , , , , , , , 9,10, ,11,14,

Penn ESE535 Spring DeHon 40 Covering Matrix Minterms  Prime Implicants /b/c/d /abd bcd a/b ac 0000 X 0101 X 0111 X X 1000 X X 1001 X 1010 X X 1011 X X 1110 X 1111 X X Goal: minimum cover

Penn ESE535 Spring DeHon 41 Essential Reduction Must pick essential PI –pick and eliminate row and column /b/c/d /abd bcd a/b ac 0000 X 0101 X 0111 X X 1000 X X 1001 X 1010 X X 1011 X X 1110 X 1111 X X

Penn ESE535 Spring DeHon 42 Essential Reduction This case: –Cover determined by essentials General case: –Reduces size of problem –These are easy…

Penn ESE535 Spring DeHon 43 Dominators: Column If a column (PI) covers the same or strictly more than another column –can remove dominated column B C D E F G H 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X C dominates B G dominates H

Penn ESE535 Spring DeHon 44 Dominators: Column If a column (PI) covers the same or strictly more than another column –can remove dominated column B C D E F G H 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X C D E F G 0101 X 0111 X X 1000 X 1010 X X 1110 X X 1111 X X

Penn ESE535 Spring DeHon 45 New Essentials Dominance reduction may yield new Essential PIs C D E F G 0101 X 0111 X X 1000 X 1010 X X 1110 X X 1111 X X C D E F G 1110 X X 1111 X X C,G now essential E dominates D and F Cover = {C,E,G}

Penn ESE535 Spring DeHon 46 Dominators: Row If a row has the same (or strictly more) PIs than another row, the larger row dominantes –we can remove the dominating row (NOTE OPPOSITE OF COLUMN CASE) C D E F G 0101 X 0111 X X 1000 X 1010 X X 1110 X X 1111 X X 0111 dominates 0101 remove dominates 1000 remove 1010

Penn ESE535 Spring DeHon 47 Cyclic Core After applying reductions –essential –column dominators –row dominators May still have a non-trivial covering matrix How do we move forward from here?

Penn ESE535 Spring DeHon 48 Example A B C D E F G H 0000 X X 0001 X X 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X

Penn ESE535 Spring DeHon 49 Cyclic Core Cannot select (e.g. essential) or exclude (e.g. dominated) a PI definitively. Make a guess –A in cover –A not in cover Proceed from there

Penn ESE535 Spring DeHon 50 Example A B C D E F G H 0000 X X 0001 X X 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X B C D E F G H 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X A in Cover:

Penn ESE535 Spring DeHon 51 Example A B C D E F G H 0000 X X 0001 X X 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X B C D E F G H 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X A in Cover: C dominates B G dominates H

Penn ESE535 Spring DeHon 52 Example A B C D E F G H 0000 X X 0001 X X 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X A not in Cover: B C D E F G H 0000 X 0001 X 0101 X X 0111 X X 1000 X X 1010 X X 1110 X X 1111 X X

Penn ESE535 Spring DeHon 53 Basic Two-Level Minimization (espresso-exact) Generate Prime Implicants Reduce (essential, dominators) If not done, –pick a cube –branch (back to reduce) on selected/not i.e. search tree … branch and bound Save smallest

Penn ESE535 Spring DeHon 54 Branching Search A in cover A not in cover {A,B} {A,/B} A and B not in cover {A,B,C} {/A,/B,/C} For N primes, how large?

Penn ESE535 Spring DeHon 55 Branching Search w/ Implications A in cover A not in cover Implications Prune Tree {A,/B, C}{/A,B,/C} Only exponential in decision where must branch /B B

Penn ESE535 Spring DeHon 56 Optimization Summarize Minterms (signature cubes) –rows represent collection of minterms with same primes Avoid generating full set of PIs –pre-combining dominators during generation Branch-and-bound pruning –get lower bound on remaining cost of a cover by computing independent set of primes (not necessarily maximal, that would be NP-hard)

Penn ESE535 Spring DeHon 57 Heuristic Don’t backtrack when select prime for inclusion/exclusion –pick cover large set of minterms/signatures –weight to select “hard” to cover signatures Generate reduced set of PIs Iterative improvement

Penn ESE535 Spring DeHon 58 Canonical Form Can start with any form of logical expression Get unique truth-table/minterms Problem not sensitive to input statement –compare covering (decomposition) –compare sequential programming languages Cost: potentially exponential explosion in minterms/PIs

Penn ESE535 Spring DeHon 59 Summary Formulate as covering problem Solution space restricted to PIs Essentials must be in solution Use dominators to further reduce space Then branching/pruning to explore rest of PIs Ways to reduce work –group minterms/PIs together early –mostly fall into this general scheme

Penn ESE535 Spring DeHon 60 Admin Reading for Monday online

Penn ESE535 Spring DeHon 61 Big Ideas Canonical Form –eliminate bias of input specification Technique: –branch-and-bound –dominators –use structure of problem to derive reduction between branching selection