Sensitive Information in a Wired World Supported by the National Science Foundation under the ITR Program JOAN FEIGENBAUM

Slides:



Advertisements
Similar presentations
Review Ch. 3 – Connecting to the Worlds Information © 2010, 2006 South-Western, Cengage Learning.
Advertisements

Defining the Security Domain Marilu Goodyear John H. Louis University of Kansas.
“Control of Personal Information: A Dialogue Between a Technologist and a Lawyer” Radcliffe Inst. and Harvard Div. of E&AS Symposium on Security and Privacy.
1 Education and Outreach in the PORTIA Project Joan Feigenbaum PORTIA Project Site Visit Stanford CA, May 12-13, 2005.
What is identity theft, and how can you protect yourself from it?
Grid Security Infrastructure Tutorial Von Welch Distributed Systems Laboratory U. Of Chicago and Argonne National Laboratory.
Online Identity Authentication and Data Broker SNAP Director’s Conference September 23, 2013.
© and The Internet Copyright Law applies to materials found on the internet to the same extent it applies to materials in traditional formats.
Hectic Ethics Computer Applications Mrs. Wohleb. Objectives Students will be able to: Describe ethical considerations resulting from technological advances.
DESIGNING A PUBLIC KEY INFRASTRUCTURE
Department of Information Engineering1 Major Concerns in Electronic Commerce Authentication –there must be proof of identity of the parties in an electronic.
Lecture 2 Page 1 CS 236, Spring 2008 Security Principles and Policies CS 236 On-Line MS Program Networks and Systems Security Peter Reiher Spring, 2008.
Introduction to PKI Seminar What is PKI? Robert Brentrup July 13, 2004.
1 WRAP UP Joan Feigenbaum PORTIA Project Site Visit Stanford CA, May 12-13, 2005.
1 The PORTIA Project: Research Overview Dan Boneh PORTIA Project Site Visit Stanford CA, May 12-13, 2005
1 Progress on the PORTIA Project JOAN FEIGENBAUM March 21, 2005; Rutgers.
CPSC156a: The Internet Co-Evolution of Technology and Society Lecture 18: November 11, 2003 Further Reflections on Privacy and Control.
1 Are “Trusted Systems” Useful for Privacy Protection? Joan Feigenbaum PORTIA Workshop Stanford Univ., July 8-9, 2004.
Copyright © Clifford Neuman - UNIVERSITY OF SOUTHERN CALIFORNIA - INFORMATION SCIENCES INSTITUTE USC CSci599 Trusted Computing Lecture Seven.
CPSC156: The Internet Co-Evolution of Technology and Society Lecture 7: February 6, 2007 More about browsers (ack.: L. Cranor); Introduction to Digital.
Chapter 9 Information Systems Controls for System Reliability— Part 2: Confidentiality and Privacy Copyright © 2012 Pearson Education, Inc. publishing.
CPSC156: The Internet Co-Evolution of Technology and Society Lecture 14: March 6, 2007 Further Reflections on Sensitive Information.
Long-term Archive Service Requirements draft-ietf-ltans-reqs-00.txt.
Scams and Schemes. Today’s Objective I can understand what identity theft is and why it is important to guard against it, I can recognize strategies that.
Quiz 2 - Review. Identity Theft and Fraud Identity theft and fraud are: – Characterized by criminal use of the victim's personal information such as a.
Software Development Unit 2 Databases What is a database? A collection of data organised in a manner that allows access, retrieval and use of that data.
D ATABASE S ECURITY Proposed by Abdulrahman Aldekhelallah University of Scranton – CS521 Spring2015.
The Social Context of Computing Foundation Computing Never underestimate the power of human stupidity.
Lecture 18 Page 1 CS 111 Online Design Principles for Secure Systems Economy Complete mediation Open design Separation of privileges Least privilege Least.
C4- Social, Legal, and Ethical Issues in the Digital Firm
1 International Forum on Trade Facilitation May 2003 Trade Facilitation, Security Concerns and the Postal Industry Thomas E. Leavey Director General, UPU.
Bitcoin (what, why and how?)
Copyright © 2000 Internet Document Security Alan Weintraub Research Director March 9, 2000.
Security Keys, Signatures, Encryption. Slides by Jyrki Nummenmaa ‘
Component 4: Introduction to Information and Computer Science Unit 2: Internet and the World Wide Web 1 Component 4/Unit 2Health IT Workforce Curriculum.
Digital Citizenship Project.  The etiquette guidelines that govern behavior when communicating on the internet have become known as netiquette.
Privacy Understanding risks & problems is a 1st step toward protecting privacy.
Cryptography, Authentication and Digital Signatures
Internet  Major:Safety science and engineering  Author:jiangqian( 蒋乾 )
Security Protocols and E-commerce University of Palestine Eng. Wisam Zaqoot April 2010 ITSS 4201 Internet Insurance and Information Hiding.
Chapter 23 Internet Authentication Applications Kerberos Overview Initially developed at MIT Software utility available in both the public domain and.
CPSC156a: The Internet Co-Evolution of Technology and Society Lecture 11: October 16, 2003 Introduction to Digital Copyright and Online Content Distribution.
Session 7 LBSC 690 Information Technology Security.
Do you believe in this? Due to its very nature, the Internet is NOT a safe or secure environment. It is an ever-changing medium where anyone and everyone.
Chapter 21 Distributed System Security Copyright © 2008.
BTT12OI.  Do you know someone who has been scammed online? What happened?  Been tricked into sending someone else money (not who they thought they were)
COPYRIGHT © 2011 South-Western/Cengage Learning. 1 Click your mouse anywhere on the screen to advance the text in each slide. After the starburst appears,
Why the Data Protection Act was brought in  The 1998 Data Protection Act was passed by Parliament to control the way information is handled and to give.
Lecture 16 Page 1 CS 236 Online Web Security CS 236 On-Line MS Program Networks and Systems Security Peter Reiher.
DIGITAL SIGNATURE.
 Make a list of things you did today. From the time you got up until now.  Who you talked to? How you communicated?  What you did before you came to.
An Introduction to the Privacy Act Privacy Act 1993 Promotes and protects individual privacy Is concerned with the privacy of information about people.
1 Privacy and Accountability: Introduction to Workshop Themes JOAN FEIGENBAUM June 28, 2006; Cambridge MA.
Legal and Ethical Issues in Computer Security Csilla Farkas
Lecture 11 Overview. Digital Signature Properties CS 450/650 Lecture 11: Digital Signatures 2 Unforgeable: Only the signer can produce his/her signature.
Attribute Delivery - Level of Assurance Jack Suess, VP of IT
ICT and the Law Mr Conti. Did you see anything wrong with that? Most people wouldn’t want that sort of information posted in a public place. Why? Because.
Computer Laws Data Protection Act 1998 Computer Misuse Act 1990.
FERPA for the Financial Aid Office NCASFAA Fall Conference November 2012.
Fall 2006CS 395: Computer Security1 Key Management.
Internet Privacy Define PRIVACY? How important is internet privacy to you? What privacy settings do you utilize for your social media sites?
A l a d d I n. c o m Strong Authentication and Beyond Budai László, IT Biztonságtechnikai tanácsadó.
Unlinking Private Data
POLICIES & PROCEDURES FOR HANDLING CONFIDENTIAL INFORMATION NOVEMBER 5 TH 2015.
Grid Security.
Component 4: Introduction to Information and Computer Science Unit 2: Internet and the World Wide Web Lecture 4 This material was developed by Oregon.
Other Sources of Information
Instructor Materials Chapter 5: Ensuring Integrity
Distributed Digital Rights Management
Presentation transcript:

Sensitive Information in a Wired World Supported by the National Science Foundation under the ITR Program JOAN FEIGENBAUM

PORTIA: Privacy, Obligations, and Rights in Technologies of Information Assessment Large-ITR, five-year, multi- institutional, multi-disciplinary, multi-modal research project on end-to-end handling of sensitive information in a wired world

Ubiquity of Computers and Networks Heightens the Need to Distinguish Private information −Only the data subject has a right to it. Public information −Everyone has a right to it. Sensitive information −“Legitimate users” have a right to it. −It can harm data subjects, data owners, or data users if it is misused.

Examples of Sensitive Information Copyright works Certain financial information –Graham-Leach-Bliley uses the term “nonpublic personal information.” Health Information Question: Should some information now in “public records” be reclassified as “sensitive”?

State of Technology +We have the ability (if not always the will) to prevent improper access to private information. Encryption is very helpful here. −We have little or no ability to prevent improper use of sensitive information. Encryption is less helpful here.

PORTIA Goals Produce a next generation of technology for handling sensitive information that is qualitatively better than the current generation’s. Enable end-to-end handling of sensitive information over the course of its lifetime. Formulate an effective conceptual framework for policy making and philosophical inquiry into the rights and responsibilities of data subjects, data owners, and data users.

Academic–CS Participants Stanford Dan Boneh Hector Garcia-Molina John Mitchell Rajeev Motwani Yale Joan Feigenbaum Ravi Kannan Avi Silberschatz Univ. of NM Stevens NYU Stephanie Forrest Rebecca Wright Helen Nissenbaum (“computational immunology”) (“value-sensitive design”)

Multidisciplinarity on Steroids J. Balkin (Yale Law School) G. Crabb (Secret Service) C. Dwork (Microsoft) S. Hawala (Census Bureau) B. LaMacchia (Microsoft) K. McCurley (IBM) P. Miller (Yale Medical School) J. Morris (CDT) B. Pinkas (Hewlett Packard) M. Rotenberg (EPIC) A. Schäffer (NIH) D. Schutzer (CitiGroup) Note participation by the software industry, key user communities, advocacy organizations, and non-CS academics.

Five Major Research Themes Privacy-preserving data mining and privacy-preserving surveillance Sensitive data in P2P systems Policy-enforcement tools for db systems Identity theft and identity privacy Contextual integrity

Privacy-preserving Data Mining Is this an oxymoron? No! Cryptographic theory is extraordinarily powerful, almost paradoxically so. Computing exactly one relevant fact about a distributed data set while concealing everything else is exactly what cryptographic theory enables in principle. But not (yet!) in practice.

Secure, Multiparty Function Evaluation... x1x1 x2x2 x 3x 3 x n-1 x nx n y = F (x 1, …, x n ) Each i learns y. No i can learn anything about x j (except what he can infer from x i and y ). Very general positive results. Not very efficient.

PPDM Work by PORTIA-related Researchers Lindell and Pinkas: Efficient 2-party protocol for ID3 data mining on x 1  x 2. Aggarwal, Mishra, and Pinkas: Efficient n-party protocol for order statistics of x 1  …  x n. Freedman, Nissim, and Pinkas: Efficient 2-party protocol for x 1  x 2.

ID Theft and ID Privacy People use the same uid/pwd at many sites. Example: Same uid/pwd at eBay and at a high-school alumni site Threat: A break-in at a low-security site reveals many uid/pwd pairs that can be used at high-security sites.

ID-Protection Work by PORTIA Researchers Blake Ross, Dan Boneh, John Mitchell Browser plug-in that converts the user’s pwd to a unique, site-specific pwd.

Basic Algorithm Locate all pwd HTML elements on page: When form is submitted, replace contents of pwd field with HMAC pwd (domain-name). Send pwd hash to site instead of pwd.

Features Conceptually simple solution! Implementation includes: –pwd-reset page –remote-hashing site (used in, e.g., cafés) –list of domains for which domain of reset page is not domain of use page (e.g., Passport) Dictionary attacks on hashes are much less effective than those on pwds and can be thwarted globally with a high-entropy plug-in pwd.

Some Areas in which Law and Technology Affect Each Other Internet access to “public records” Identification technology Unsolicited and phone calls Digital copyright and DRM

“Public Records” in the Internet Age Depending on State and Federal law, “public records” can include: Birth, death, marriage, and divorce records Court documents and arrest warrants (including those of people who were acquitted) Property ownership and tax-compliance records Driver’s license information Occupational certification They are, by definition, “open to inspection by any person.”

How “Public” are They? Traditionally: Many public records were “practically obscure.” Stored at the local level on hard-to-search media, e.g., paper, microfiche, or offline computer disks. Not often accurately and usefully indexed. Now: More and more public records, especially Federal records, are being put on public web pages in standard, searchable formats.

What are “Public Records” Used For? In addition to straightforward, known uses (such as credential checks by employers and title searches by home buyers), they’re used for: Commercial profiling and marketing Dossier compilation Identity theft and “pretexting” Private investigation Law enforcement

Questions about Public Records in the Internet Age Will “reinventing oneself” and “social forgiveness” be things of the past? Should some Internet-accessible public records be only conditionally accessible? Should data subjects have more control? Should data collectors be legally obligated to correct mistakes?

Identification Infrastructure Today I We are often asked to “present gov’t-issued photo ID.” –Airports –Buildings –Some high-value financial transactions Many gov’t-issued photo IDs are easily forgeable. –Drivers’ licenses –Passports We are often asked to provide personally identifying information (PII). –Social security number –Mother’s maiden name –Date of birth Many people and organizations have access to this PII.

Identification Infrastructure Today II Security of “foundation documents” (e.g., birth certificates) is terrible. According to the US Department of Justice, the rate of identity theft is growing faster than that of any other crime in the United States. Existing technology could improve, if not perfect, ID security, e.g.: –Biometrics –Cryptographic authentication There is extensive research interest in improving this technology (and the systems that support it).

Are Standard, Secure ID Systems Desirable? +Ordinary people could benefit from accurate, efficient identification, and identity thieves would have a harder time. −Multi-purpose, electronic IDs facilitate tracking, linking, dossier compilation, and all of the other problems currently facilitated by Internet-accessible “public records.” −Multi-purpose, standard “secure” IDs magnify the importance of errors in ID systems.

Possible Approaches Build secure ID systems that don’t facilitate linking and tracking. –Tracking a “targeted” person should require a court-ordered key. –Tracking someone for whom one doesn’t have such a key should be provably infeasible. –There’s already a plausible start on this in the security-theory literature. Organizations could “seize the high ground” by not retaining usage data for identification and authorization tokens (a fortiori not mining, selling, or linking it). –At least one ID start-up company is making this claim. –How can such a claim be proven? –Security theory does not address this question (yet!).

What May We Use To Prevent Unwanted Phone Calls? +Technology Answering machines Caller ID +Money (together with technology) “Privacy-guard service” from SNET ? Government “Do-Not-Call” lists seem to be controversial.

What May We Use To Prevent Unwanted ? +Technology Filters CAPTCHAs “Computational postage” ? Government +Yes, if the unwanted is “trespass to chattel,” which requires that it “harm” the recipient’s computer system. (CyberPromotions) −No, if the is merely “unwanted.” (Hamidi)

Is a Network like a Country? Size, diversity, and universal connectivity imply risk. Get over it! Subnetworks ≈ neighborhoods (J Yeh, CS457) –Some segregation happens naturally. –Gov’t-sanctioned segregation is wrong. Alternative: Network nodes ≈ homes (JF) –A man’s computer is his castle. –Do I have to be rich or tech-savvy to deserve control over my own computer?

Is there a Limit to the Upside of Network Effects? Metcalf’s Law: The value to a potential user of connecting to a network grows as the square of the number of users already connected. Feigenbaum’s Law: Metcalf’s Law holds only until almost all potential users, including the scum of the earth, are connected. Then the value of the network drops to zero for almost everybody.

Copyright: Dual Doomsday Scenarios Today’s Rights Holders and Distributors: Technical Protection Systems (TPSs) won’t work. Copying, modification, and distribution will become uncontrollable. Fair-Use Advocates: TPSs will work. Rights holders will have more control than they do in the analog world. My Prediction: Both and neither! Copyright law, business models, TPSs, and users will evolve.

Content-Distribution System Specification Part of the spec should be “enforce copyright law” (or at least “obey copyright law”). In US Copyright Law +Owners are given (fairly) well defined rights. −Users are given “exceptions” to owners’ rights. This is no way to specify a system! Need affirmative, direct specification of what users are allowed to do.

What if Someone Builds a Good TPS? Lots of clever arguments in favor of –Users’ rights to reverse engineer –Users’ rights to circumvent These arguments are correct but insufficient –As system engineering (see “specification” slide). –As a philosophical position: If fair use is a part of the copyright bargain, then one should not have to hack around a TPS to make fair use. –As protection against ever-expanding rights of owners: What if someone builds a TPS that, for all practical purposes, can’t be hacked?

Content-Distribution System Engineering “Fair use analysis therefore requires a fact intensive, case-by-case approach.” [Mulligan and Burstein 2002] This is no way to engineer a mass-market system! Need to be able to recognize the typical, vast majority of fair uses extremely efficiently and permit them. Note that, in the analog content-distribution world, the vast majority of fair uses are non- controversial.

The Way Forward? I Rewrite copyright law so that it makes sense in today’s (or any?) technological world. +Preserve the policy (“Promote progress in science and the useful arts…”). −Change the technologically out-of-date mechanisms (e.g., copy control). Sanity check: Create something that works as well for Internet-based content distribution as today’s copyright law works for (physical) books.

The Way Forward? II “The best TPS is a Great Business Model.” [Lacy, Maher, and Snyder 1997] Use technology to do what it does naturally. An Internet content-distribution business should benefit from uncontrolled copying and redistribution.

Core Technical Problem: The Unreasonable Effectiveness of Programmability Many machine-readable permissions systems –Rights-management languages –Privacy policies –Software licenses None is now technologically enforceable. –All software-only permissions systems can be circumvented. –Once data are transferred, control is lost.

Will “Trusted Systems” Help? Hardware-based, cryptographic support for proofs that a data recipient’s machine is running a particular software stack. Potential problems: –Technical: Very hard to build. –Business: Adoption hurdles. –Philosophy: Privacy, fair use, MS hatred, etc. Potential benefits: –Copyright enforcement? Maybe. –Privacy enforcement? Much harder!