1 Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization of Aldehyde 學生:江柏誼 指導教授:于淑君 博士 Thioacetalization
2 Corey-Seebach Reaction Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, n=2-6 Base
3 Acetalization and Thioacetalization of Carbonyl Compounds
4 The Earlier Catalyst for Thioacetalization J.W. Ralls, et. al., J. Am.Chem. Soc. 1949, 71,
5 HCl Catalyzed Thioacetalization Robert Ramage, et. al., J. Chem. Soc., Perkin Trans , 71,
6 Lewis Acid Catalyzed Thioacetalization Conventional Lewis Acids BF 3 -Et 2 O 、 ZnCl 2 、 AlCl 3 、 SiCl 4 、 LiOTf 、 InCl 3 Nakata, T. et. al., Tetrahedron Lett. 1985, 26, Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn. 2001, 74, Transition Metal Lewis Acids TiCl 4 、 WCl 6 、 CoCl 2 、 Sc(OTf) 3 、 MoCl 5 、 NiCl 2 Kumar, V. et. al., Tetrahedron Lett. 1983, 24, Firouzabadi, H. et., al. Synlett 1998, Goswami, S. et. al., Tetrahedron Lett. 2008, 49, Lanthanide Metal Lewis Acids Lu(OTf) 3 、 Nd(OTf) 3 Kanta, D. S. J. Chem. Res. Synop. 2004, Kanta, D. S. Synth. Commun. 2004, 34,
7 BF 3 -Et 2 O Catalyzed Thioacetalization One use only Paulo J.S. Moran. J. Organomet. Chem., 2000, 603,
8 MoCl 5 or MoO 2 Cl 2 Catalyzed Thioacetalization S. Goswami, A. C. Maity. Tetrahedron Letters, 2008, 49, 3092–3096 One use only
9 CoCl 2 Catalyzed Thioacetalization 1hr 91 % One use only 5 mole% CoCl 2 Surya Kanta De. Tetrahedron Letters, 2004, 45, 1035–1036
10 Nickel(II) Chloride Catalyzed Thioacetalization 2.5 hour 96 % A. T. Khan et al., Tetrahedron Lett. 2003, 44, 919–922 One use only 10 mole % NiCl 2
11 Motivation 1.Traditional high valent metal halide Lewis acids are difficult to handle ex. MCl n,M=Zn 、 W 、 Co 、 Mo….. 2.Nickel is less expensive than other transition metal NiCl 2 50g $ 29.2 WCl 6 100g $ PdCl 2 25g $ 849 NIBr 2 50g $ 72.2 W(CO) 6 50g $ (DME)NiBr 2 as preferable precursor not (DME)NiCl 2 [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 & [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiCl 2 4.Use HO(CH 2 ) 11 N(H)P(O)(2-py) 2 as chelate ligand [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2
12 Ni => small Δ o => tetrahedral & square planar Pd & Pt => large Δ o => square planar Ligands => large, weak-field => tetrahedral Ligands => small, strong-field => square planar Comparison of M 2+ (d 8 species) Square Planar vs. Tetrahedral Complexes
13 R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, The tetrahedral structure is increasingly favored in the orders PPh 2 R : P(C 2 H 5 ) 3 < P(C 2 H 5 ) 2 C 6 H 5 < PC 2 H 5 (C 6 H 5 ) 2 < P(C 6 H 5 ) 3 X : Cl < Br < I Square Planar - Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh 2 R) 2 X 2
14 Preparation of Aminodipyridylphosphine Oxide Ligand 75 % 1 93 % 2
15 Preparation of Nickel(II) Complex Catalyst 76 % Paramagnetic 3 2
16 Chemical Shift of Paramagnetic Compounds for NMR δ observed =δ diamagnetic + δ hyperfine δ diamagnetic = diamagnetic shift corresponds to the values for the free ligand. δ hyperfine =δ contact + δ dipolar δ contact = contact shifts are caused by spin delocalization of the unpaired electrons through chemical bonds (through bond) δ dipolar = dipolar shifts, between the paramagnetic center and the nucleus of interaction (through space) due to the paramagnetic center presence Major Broad signal J. Phys. Chem. A, 2003, 107,
17 Square planar Tetrahedral
18 IR of [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 HO(CH 2 ) 11 N(H)P(O)(2-py) cm cm cm cm -1 [HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2
19 EPR of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 g=2 g = 2.18
20 SUQID of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 χ = m / H χ m = (χ / W) × M μ eff = (3k / Nβ2)1/2(χmT)1/2 = 2.828(χ m T) 1/2 m :磁矩, H :外加磁場 (10000 guess), χ :磁化率 χ m :莫耳磁化率, W :樣品重量, M :樣品分子量 μ eff :有效磁矩, T : 溫度, β :波耳磁元 K :波茲曼常數, N : 6.02 x 1023 slope = 1/(χ m T) = χ m T = 1/0.936 μ eff = (χ m T) 1/2 μ eff = 2.92
21 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 Tetrahedral μ eff = 2.92 The Organometallic Chemistry of The Transition Metals. 2005
22 FAB-MS of HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr + = 528 m + /Z
23 Nickel Lewis Acids Complex Catalyzed Thioacetalization Thiol = =
24 Entry Time Yield (%)Paper Reported cat. (NiCl 2 ) Time Yield (%) hr hr96 22 min>998 min min9945 min90 65 hr9220 hr82
25 Entry Time Yield (%) 2 2 min> min min99 52 hr90 Entry Time Yield (%) 6 5 hr hr80 83 hr92
26 Entry Time Yield (%) 10 2 hr min hr min92 Entry Time Yield (%) min/ 4.5 hr 79 / min94
27 Entry Time Yield (%)Paper Reported cat. (NiCl 2 ) Time Yield (%) hr892.5 hr min>9930 min min hr hr93
28 Entry Time Yield (%) 16 5 min> hr min hr92 Entry Time Yield (%) hr hr hr82
29 Entry Time Yield (%) 24 2 hr min hr min97 Entry Time Yield (%) min/ 5.5 hr 75/ min93
30 EntryRThiol 40 o C25 o C Time Yield (%) min881.5 hr (1) min872.5 hr (15) hr865 hr (6) hr9018 hr (20) 93
31 Comparison of Catalytic Activity Amoung Various Different Catalyst EntryCat.TimeYield (%) APaper ( NiCl 2 anhydrous)30 min93 BNONE24 hour96 CHO(CH 2 ) 11 N(H)P(O)(2-py) hour34 D(DME)NiCl 2 5 min90 E[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiCl 2 35 min93 F(DME)NiBr 2 5 min95 G[HO(CH 2 ) 11 N(H)P(O)(2-py) 2 ]NiBr 2 5 min>99
32 Proposed Mechanism δ (3)(3)
33 Recyclable Nickel(II) Complex Catalyst for Thioacetalization of Aldehyde 1 H NMR Solvent= CDCl 3 ( M 4-Iodoanisole) Recycling NO.Reaction Time Yield 15 min94 % 25 min99 % 35 min99 % 45 min99 % 55 min99 % 6.5 min99% 7.5 min99 % 8.5 min99 %
34 Near Future Work for Nickel(II) Complex Immobilization onto AuNPs surfaces NiBr 2 (DME) Cat.
35 Conclusions 1.We have successfully synthesized an air- and water-stable and efficient catalyst { [HO(CH 2 ) 11 NHPOpy 2 ]NiBr 2 }. 2. We use 1 H NMR 、 FT-IR 、 EPR 、 SQUID and FAB-MS for structural characterization of Nickel(II) complex, we have proved the compound demonstrated that it is a paramagnetic tetrahedral compound, and we will proceed detection of Elemental Analysis (EA). 3.In Ni-catalyst series, the Nickel(II) complex only can be reused for catalytic of thioacetalization of aldehyde many times without any loss of reactivity.
36 Chemoselectivities in Acetalization, and Thioacetalization J. Phys. Chem. A 2006, 110,
37 (DME)NiCl 2 5g 3549 (DME)NiBr 2 5g 4060 $ 77.3 CoCl 5 100g $ 75 MoCl 5 100g $ 130 MoO 2 Cl 2 10g $ 120
38 EPR of [Ni(CTH)DTBSQ]PF 6 at B = 3.2 Tesla g = 2 g 1 = 5.8 g 1 = 2.4 g 1 = 1.7 Inorganic Chemistry, 1988, 27, Zero-field spectra and Kramer’s degeneracy (Kramers doublet)