Институт космических исследований Российской Академии наук О возможности моделирования изменения размеров и формы ионопаузы Венеры в цикле солнечной активности.

Slides:



Advertisements
Similar presentations
Rosetta_CD\PR\what_is_RS_v4.ppt, :45AM, 1 Mars Data Workshop Mars Express Radio Science MaRS Data Products, Part II Martin Pätzold, Silvia.
Advertisements

1 Evolution of understanding of solar wind-gaseous obstacle interaction O. Vaisberg Space Research Institute (IKI), Moscow, Russia The third Moscow International.
1 Ionospheres of the Terrestrial Planets Stan Solomon High Altitude Observatory National Center for Atmospheric Research
The Radial Variation of Interplanetary Shocks C.T. Russell, H.R. Lai, L.K. Jian, J.G. Luhmann, A. Wennmacher STEREO SWG Lake Winnepesaukee New Hampshire.
Foreshock studies by MEX and VEX FAB: field-aligned beam FAB + FS: foreshock M. Yamauchi et al.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
Plasma layers in the terrestrial, martian and venusian ionospheres: Their origins and physical characteristics Martin Patzold (University of Cologne) and.
Martian Pick-up Ions (and foreshock): Solar-Cycle and Seasonal Variation M. Yamauchi(1); T. Hara(2); R. Lundin(3); E. Dubinin(4); A. Fedorov(5); R.A. Frahm(6);
Observations of the Effects of Solar Flares on Earth and Mars Paul Withers, Michael Mendillo, Joei Wroten, Henry Rishbeth, Dave Hinson, Bodo Reinisch
Titan’s Thermospheric Response to Various Plasma Environments Joseph H. Westlake Doctoral Candidate The University of Texas at San Antonio Southwest Research.
Morphology of meteoric plasma layers in the ionosphere of Mars as observed by the Mars Global Surveyor Radio Science Experiment Withers, Mendillo, Hinson.
Solar wind interaction with the comet Halley and Venus
Summer student work at MSSL, 2009 Kate Husband – investigation of magnetosheath electron distribution functions. Flat-topped PSD distributions, correlation.
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Meteor layers in the martian and venusian ionospheres: Their connection to meteor showers Paul Withers (Boston University), Martin Patzold (University.
In both cases we want something like this:
Comparative Aeronomy at Earth and Mars Paul Withers Boston University In collaboration with Michael Mendillo and BU colleagues, David.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
Use of Martian Magnetic Field Topology as an Indicator of the Influence of Crustal Sources on Atmospheric Loss D.A. Brain, D.L. Mitchell, R. Lillis, R.
Solar System Physics Group Grande et al, Venus, RAS 2010 Solar wind interactions and Ionospheric loss mechanisms at Venus M Grande, A G Wood, I C Whittaker,
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
Julie A. Feldt CEDAR-GEM workshop June 26 th, 2011.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Rosetta_CD\PR\what_is_RS.ppt, :39AM, 1 Mars Express Radio Science Experiment MaRS MaRS Radio Science Data: Level 3 & 4 The retrieval S.Tellmann,
Nighttime 4-peak Longitudinal Structure of Ionospheric Plasma Density at Mid-Low latitudes During High and Extreme.
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
EGU General Assembly 2013, 7 – 12 April 2013, Vienna, Austria This study: is pioneer in modeling the upper atmosphere, using space geodetic techniques,
Институт космических исследований Российской Академии наук Необычная магнитосфера Марса – сопоставление результатов предшествующих и последних исследований.
Space Weather from Coronal Holes and High Speed Streams M. Leila Mays (NASA/GSFC and CUA) SW REDISW REDI 2014 June 2-13.
Comparison of Solar EUV Irradiance Measurements from CDS and TIMED/EGS W. T. Thompson L3 Communications EER, NASA GSFC P. Brekke ESA Space Science Department.
Multi-fluid MHD Study on Ion Loss from Titan’s Atmosphere Y. J. Ma, C. T. Russell, A. F. Nagy, G. Toth, M. K. Dougherty, A. Wellbrock, A. J. Coates, P.
9 May MESSENGER First Flyby Magnetospheric Results J. A. Slavin and the MESSENGER Team BepiColombo SERENA Team Meeting Santa Fe, New Mexico 11 May.
Jeff Forbes (CU), Xiaoli Zhang (CU), Sean Bruinsma (CNES), Jens Oberheide (Clemson U), Jason Leonard (CU) 1 Coupling to the Lower Atmosphere, an Observation-Based.
1 Mars Micro-satellite Mission Japanese micro-satellite mission to Mars to study the plasma environment and the solar wind interaction with a weakly-magnetized.
Abstract: A simple representative model of the ionosphere of Mars is fit to the complete set of electron density profiles from the Mars Global Surveyor.
A new stationary analytical model of the heliospheric current sheet and the plasma sheet Roman Kislov IKI RAS 2015
The ionosphere of Mars never looked like this before Paul Withers Boston University Space Physics Group meeting, University of Michigan.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © Ionosphere II: Radio Waves April 12, 2012.
Адиабатический нагрев электронов в хвосте магнитосферы. Физика плазмы в солнечной системе» февраля 2012 г., ИКИ РАН Зеленый Л.М., Артемьев А.В.,
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Authors: S. Beyene1, C. J. Owen1, A. P. Walsh1, A. N. Fazakerley1, E
A new concept radio occultation experiment to study the structure of the atmosphere and determine the plasma layers in the ionosphere. Gavrik A.L. Kotelnikov.
Group A: S. Bale(Tutor), B. Engavale, W.L. Shi, W.L. Teh, L. Xie, L. Yang, and X.G. Zhang 13,May rd COSPAR Capacity Building Workshop3 rd COSPAR.
Fast Magnetosonic Waves and Global Coronal Seismology in the Extended Solar Corona Ryun Young Kwon, Jie Zhang, Maxim Kramar, Tongjiang Wang, Leon Ofman,
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Global Structure of the Inner Solar Wind and it's Dynamic in the Solar Activity Cycle from IPS Observations with Multi-Beam Radio Telescope BSA LPI Chashei.
Magnetic reconnection in the magnetotail: Geotail observations T. Nagai Tokyo Institute of Technology World Space Environment Forum 2005 May 4, 2005 Wednesday.
Физика плазмы в солнечной системе – 10-я конференция, ИКИ РАН, Эксперимент ФИЛА-РОМАР – плазменные измерения на поверхности кометы 67Р/ Чурумов-Герасименко.
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
Ionospheric characteristics above martian crustal magnetic anomalies Paul Withers, M Mendillo, H Rishbeth, D Hinson, and J Arkani-Hamed Abstract #33.02.
How the ionosphere of Mars works Paul Withers Boston University Department Lecture Series, EAPS, MIT Wednesday :00-17:00.
The heliospheric magnetic flux density through several solar cycles Géza Erdős (1) and André Balogh (2) (1) MTA Wigner FK RMI, Budapest, Hungary (2) Imperial.
Plasma populations in the tail of induced magnetosphere
Introduction to Space Weather Interplanetary Transients
Ionospheric Effect on the GNSS Radio Occultation Climate Data Record
Earth’s Ionosphere Lecture 13
Exploring the ionosphere of Mars
Exploring the ionosphere of Mars
Phillip Hess Jie Zhang, Dusan Odstrcil
Comparisons and simulations of same-day observations of the ionosphere of Mars by radio occultation experiments on Mars Global Surveyor and Mars Express.
Recovery of Mars ionospheric electron density profiles acquired by the Mariner 9 radio occultation instrument N. Ferreri, Paul Withers, S. Weiner Abstract.
Simulations of the response of the Mars ionosphere to solar flares and solar energetic particle events Paul Withers EGU meeting Vienna,
Mars, Venus, The Moon, and Jovian/Saturnian satellites
The Vertical Structure of the Martian Ionosphere
Model of solar faculae А.А. Solov’ev,
Radar Soundings of the Ionosphere of Mars
by Andreas Keiling, Scott Thaller, John Wygant, and John Dombeck
Presentation transcript:

Институт космических исследований Российской Академии наук О возможности моделирования изменения размеров и формы ионопаузы Венеры в цикле солнечной активности GDRE ‘Cosmophysique workshop, Toulouse, France, April 2-4, 2008 М.И. Веригин, Г.А. Котова Доклад на конференции “Физика плазмы в солнечной системе” февраля 2009 г., ИКИ РАН

Venusian ionopause observations Ionopause position in electron density profiles during Venera 9,10 radiooccultations at different SZA Savich et al., Proc 13 th Int.Symp.Space Tech.Sci. Tokyo, 1982, p  A distinct upper boundary of the Venusian ionosphere, called ionopause, was first observed by lone radio occultation of Mariner 5 (Mariner Stanford Group,1967).  Subsequent radio occultation of Mariner 10 found the ionopause at lower heght and not as sharp as in Mariner 5 case (Howard et al., 1974), thus originating some uncertainty in this boundary.  The permanent existence of the Venusian ionopause became evident after multiple Venera 9 and 10 radio occultations (Aleksandrov et al., 1976)

Venusian ionopause observations PVO dayside ionopause altitude dependence on SW ram pressure (proxy) for three subsets of SZA Elphic et al., GRL, 7,No.8, 561,1980  Pioneer Venus Orbiter (PVO) data provide large array of this boundary observations by different instruments at different solar zenith angles (SZA) and under various upstream solar wind and EUV flux (Feuv) conditions (see, e.g., Elphic et al., 1980, Brace et al., 1983, Phillips et al., 1988).

 Very detailed study of Venusian ionopause by Phillips et al. (JGR, A5, 3927, 1988) included its ~ 800 PVO ionopause crossings with SZA < 90 o and with upstream solar wind measurements Venusian ionopause observations  Average ionopause height dependence on SZA as determined by different methods over PVO observations Philips et al., JGR, 89, , 1984

 All PVO ionopause crossings were observed in the initial period of observations under maximal solar activity conditions (SAmax) only  Among all PVO ionopause observations, only 86 of its crossings took place under controlled solar  V 2 and EUV flux conditions. Hopeless situation ??? Venusian ionopause observations  Latest Venus Express (VEX) orbiter enabled possibility of near solar minimum (SAmin) in situ studies of magnetic barrier region but not the ionopause, since it was seldom observed with VEX periapsis at 250 – 350 km (Zhang et al., 2008)

Ionopause shape long term variations deduction Fortunately range of EUV flux variations in initial PVO period was ~50% of its global value… Variation of Solar EUV flux during period of PVO measurements. Red points corresponds to period used in present analysis.

We will get shape of its nose as : From pressure balance at ionopause : Ionopause shape parameterization with Theoretical description:

Ionotail diameter D comes from numerical integration of pressure balance equation with upper ionosphere pressure profile: Ionopause shape parameterization Analytic approximation of D: with

8-D fitting of pressure profile parameters for minimizing of mean squared distance between observed ionopause positions and model ionopause surface r eq = R v (F euv – 1.65) km, p eq = (Feuv – 1.65) nP H 1 = (Feuv – 1.65) km, H 2 = (Feuv – 1.65) km Ionopause shape parameterization Ionopause shape analytic equation:

Results of 8-D ionopause fitting Region of EUV flux and ram pressure variations used in fitting Resulted scatter plot of external and internal pressures across the ionopause Variation of subsolar ionopause position or internal plasma pressure during the solar cycle

Results of 8-D ionopause fitting Comparison of modeled and observed Venusian ionopause positions

This variation is mainly (?) con- nected with solar EUV flux variations within solar cycle that influence neutral exosphere ionization rate Solar cycle variation of the Venusian terminator BS is the strongest and most reliably established Venusian bow shock: Search for Solar cycle variations Venusian bow shock: Search for Solar cycle variations Russell et al., Adv. Space Res., 10, 55, 1990 Zhang et al., JGR, 95, 14961, 1990 Relative role of other factors, e.g. - solar wind Alfvenic Mach number systematic variation, - magnetic barrier shape variation …, yet to be defined by advance modeling

Выводы  Другой областью возможного использования построенной модели ионопаузы является ее использование для моделирования околовенерианской ударной волны, что может обеспечить:  Построена аналитическая модель ионопаузы Венеры, описывающая изменения ее положения и формы в зависимости от динамического давления солнечного ветра и потока УФ излучения Солнца.  Такая модель позволяет проследить вариации размеров и формы ионопаузы на протяжении солнечного цикла и, следовательно, может быть использована для начального периода измерений на спутнике Венера Экспресс, орбита которого не позволяла проводить прямые измерения в окрестности ионопаузы. расширенные возможности для правильного переноса в подсолнечную точку и на терминатор ее наблюдавшихся положений, а также для их нормализации и мультифакторного анализа; выяснение относительной роли различных факторов влияющих на необычно большую вариацию в солнечном цикле положения околовенерианской ударной волны на терминаторе.

Conclusions  Another region of analytical ionopause model application is its use for the Venusian bow shock thus providing:  Venusian analytical ionopause model is developed including variations of its position and shape separately from solar wind ram pressure and solar EUV flux.  This model provides possibility to trace ionopause its position and shape variations within solar cycle and, thus, can be applied for the SA min period of Venus Express observations, which orbit do not provides possibility for direct ionopause studies. enhanced possibilities for reasonably correct mapping, normalization, and multifactor analysis of its crossings; clearification of relative role of different factors of unusually large variation of the bow shock terminator position within solar cycle.