Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axions Georg G. Raffelt, Max-Planck-Institut für Physik, München.

Slides:



Advertisements
Similar presentations
Georg G. Raffelt, Max-Planck-Institut für Physik, München
Advertisements

Georg G. Raffelt, Max-Planck-Institut für Physik, München
Dark Matter, Dark Energy, and the Current State of Cosmology
Dark Energy and Quantum Gravity Dark Energy and Quantum Gravity Enikő Regős Enikő Regős.
String theoretic QCD axions in the light of PLANCK and BICEP2 (QCD axion after BICEP2) Kiwoon KIAS, May 1, 2014 KC, K.S. Jeong and M.S. Seo, arXiv:
Testing CPT with CMB 李明哲 University of Bielefeld 2008 年 4 月 28 日.
Cosmological CPT Violation, Baryo/leptogenesis and CMB Polarization Mingzhe Li Nanjing University.
What mass are the smallest protohalos in thermal WIMP dark-matter models? Kris Sigurdson Institute for Advanced Study Space Telescope Science Institute.
The CAST experiment: status and perspectives Francisco José Iguaz Gutiérrez On behalf of the CAST Collaboration IDM2010-Montpellier 27th July 2010.
Why we need Lab Experiments to search for Alps Joerg Jaeckel 1 E. Masso, J. Redondo 2 F. Takahashi, A. Ringwald 1 1 DESY 2 Universitat Autonoma de Barcelona.
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Particle Physics and Cosmology
Galaxies and Cosmology 5 points, vt-2007 Teacher: Göran Östlin Lectures
Dark Energy and Void Evolution Dark Energy and Void Evolution Enikő Regős Enikő Regős.
Andreas Ringwald, DESY 27 th DESY PRC Closed Session, DESY, Hamburg, 26 October 2011 Towards a comprehensive summary Physics Case for WISP Searches.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Particle Physics and Cosmology cosmological neutrino abundance.
Georg Raffelt, MPI Physics, Munich Physics Colloquium, Univ. Sydney, 3 March 2014 Dark Matter Axion Dark Matter Georg G. Raffelt, Max-Planck-Institut für.
Georg Raffelt, MPI Physics, MunichOff-the-Beaten-Track Dark Matter, ICTP, Trieste 13–17 April 2015 Astrophysical and Cosmological Axion Bounds Georg G.
Atomic Precision Tests and Light Scalar Couplings Philippe Brax IPhT Saclay « The Proton Radius Puzzle » Workshop, Trento November 2012 P.B and C. Burrage,
Cosmology I & II Expanding universe Hot early universe Nucleosynthesis Baryogenesis Cosmic microwave background (CMB) Structure formation Dark matter,
Dark Energy Bengt Gustafsson: Current problems in Astrophysics Lecture 3 Ångström Laboratory, Spring 2010.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
String theoretic QCD axions in the light of PLANCK and BICEP2 Kiwoon CosKASI Conference, April 16, 2014 KC, K.S. Jeong and M.S. Seo, arXiv:
Robert Foot, CoEPP, University of Melbourne June Explaining galactic structure and direct detection experiments with mirror dark matter 1.
Cosmology I & II Fall 2012 Cosmology Cosmology I & II  Cosmology I:  Cosmology II: 
Dark Matter and Dark Energy from the solution of the strong CP problem Roberto Mainini, L. Colombo & S.A. Bonometto Universita’ di Milano Bicocca Mainini.
Astrophysical and Cosmological Axion Limits
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
AS2001 / 2101 Chemical Evolution of the Universe Keith Horne Room 315A
The Universe  What do we know about it  age: 14.6 billion years  Evolved from Big Bang  chemical composition  Structures.
AS2001 Chemical Evolution of the Universe Keith Horne 315a
Cosmology, Cosmology I & II Fall Cosmology, Cosmology I & II  Cosmology I:  Cosmology II: 
University of Durham Institute for Computational Cosmology Carlos S. Frenk Institute for Computational Cosmology, Durham Galaxy clusters.
FRW-models, summary. Properties of the Universe set by 3 parameters:  m,  ,  k of Which only 2 are Independent:  m +   +  k = 1.
Dark Matter and Dark Energy components chapter 7 Lecture 4.
PHY th century cosmology 1920s – 1990s (from Friedmann to Freedman)  theoretical technology available, but no data  20 th century: birth of observational.
A Lightning Review of Dark Matter R.L. Cooper
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
Large extra dimensions and CAST Biljana Lakić Rudjer Bošković Institute, Zagreb Joint ILIAS-CAST-CERN Axion Training, , CERN Joint ILIAS-CAST-CERN.
Cosmological mass bounds on hot-dark matter axions Alessandro MIRIZZI (MPI, Munich) NOW Neutrino Oscillation Workshop Conca Specchiulla, September.
Testing Chameleon Dark Energy Amanda Weltman University of Cambridge Portsmouth June 2008 University of Cape Town.
Indirect Detection Of Dark Matter
Dark matter and hidden U(1) X (Work in progress, In collaboration with E.J. Chun & S. Scopel) Park, Jong-Chul (KIAS) August 10, 2010 Konkuk University.
Results and perspectives of the solar axion search with the CAST experiment Esther Ferrer Ribas IRFU/CEA-Saclay For the CAST Collaboration Rencontres de.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
The Search for Axion Dark Matter Pierre Sikivie U of Florida Fermilab Colloquium Nov. 15, 2006.
Search for new physics from the CERN Axion Solar Telescope (CAST) high-energy calorimeter David W. Miller Advisor: Juan I. Collar Bachelor’s thesis Defense.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
Georg Raffelt, MPI Physics, Munich IAXO Workshop, INFN Frascati, 18–19 April 2016 Axion Landscape Solar Axions Supernova 1987A Dark Matter Long-Range Force.
Klein Particles in the Universe Oscar Klein Memorial Lecture 2008 Helen R. Quinn SLAC.
Max Planck Institute for Physics, Munich
Derek F. Jackson Kimball. Collaboration Dmitry Budker, Arne Wickenbrock, John Blanchard, Samer Afach, Nathan Leefer, Lykourgas Bougas, Dionysis Antypas.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Konstantinos Dimopoulos Lancaster University Work done with: Sam Cormack arXiv: [astro-ph.HE]
A natural solution of the μ problem and QCD axion Jihn E. Kim Kyung Hee University (GIST until Feb.) Seoul National University Yong Pyong Workshop Feb.
The CAST Experiment A search for Solar Axions Jaime Ruz Armendáriz, LFNAE, Zaragoza University On behalf of the CAST Collaboration CASTCAST.
Neutrinos Neutrinos and the Stars 2 Crab Nebula
X-ray telescope: D. Greenwald, R. Kotthaus, G. Lutz
G. Dattoli and F. Nguyen ENEA-FRASCATI
The Search for Axions Pierre Sikivie Axion Dark Matter Conference &
dark matter Properties stable non-relativistic non-baryonic
David W. Miller APS Apker Award 8 September, 2005
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
21cm Hydrogen spectrum anomaly and dark matter Qiaoli Yang Jian University Phys.Rev.Lett. 121 (2018) Nick Houston, Chuang Li, Tianjun Li, Qiaoli.
Presentation transcript:

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axions Georg G. Raffelt, Max-Planck-Institut für Physik, München Axions Motivation, Cosmological Role and Astrophysical Limits Motivation, Cosmological Role and Astrophysical Limits 4 th Schrödinger Lecture, Universität Wien, 24 May 2011

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 CP Violation in Particle Physics Physics Nobel Prize 2008 Discrete symmetries in particle physics C – Charge conjugation, transforms particles to antiparticles violated by weak interactions P – Parity, changes left-handedness to right-handedness violated by weak interactions T – Time reversal, changes direction of motion (forward to backward) CPT – exactly conserved in quantum field theory CP – conserved by all gauge interactions violated by three-flavor quark mixing matrix M. Kobayashi T. Maskawa  All measured CP-violating effects derive from a single phase in the quark mass matrix (Kobayashi-Maskawa phase), i.e. from complex Yukawa couplings  Cosmic matter-antimatter asymmetry requires new ingredients

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Measurements of CKM Unitarity Triangle CKMfitter Group UTfit Collaboration

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Kobayashi and Maskawa

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 The CP Problem of Strong Interactions Real quark mass Phase from Yukawa coupling Angle variable Remove phase of mass term by chiral transformation of quark fields

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Neutron Electric Dipole Moment Violates time reversal (T) and space reflection (P) symmetries Natural scale Experimental limit Limit on coefficient

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Dynamical Solution Peccei & Quinn 1977, Wilczek 1978, Weinberg 1978 CP-symmetry dynamically restored

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 The Pool Table Analogy (Pierre Sikivie 1996) Gravity Symmetric relative to gravity Pool table New degree of freedom  Axion (Weinberg 1978, Wilczek 1978) Axis Symmetry dynamically restored (Peccei & Quinn 1977) Symmetry broken Floor inclined fafa

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May Years of Axions

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 The Cleansing Axion Frank Wilczek “I named them after a laundry detergent, since they clean up a problem with an axial current.” (Nobel lecture 2004)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion BoundsDirectsearches Too much cold dark matter (classic) TelescopeExperiments Globular clusters (a-  -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Too much hot dark matter CAST ADMX CARRACK Classic region Anthropic region [GeV] f a eVkeVmeV  eV mama neV 10 15

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Supernova 1987A Energy-Loss Argument SN 1987A neutrino signal Neutrinosphere Neutrino diffusion Volume emission Volume emission of novel particles of novel particles Late-time signal most sensitive observable Emission of very weakly interacting particles would “steal” energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Diffuse Supernova Axion Background (DSAB) Raffelt, Redondo & Viaux work in progress (2011) Neutrinos from all core-collapse SNe comparable to photons from all stars Diffuse Supernova Neutrino Background (DSNB) similar energy density as extra-galactic background light (EBL), approx 10% of CMB energy density DSNB probably next astro neutrinos to be measured

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Do White Dwarfs Need Axion Cooling? Isern, Catalán, García-Berro & Torres arXiv: White dwarf luminosity function (number of WDs per brightness interval) No axions

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion as a Nambu-Goldstone Boson Periodic variable (angle)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Creation of Cosmological Axions Axions are born as nonrelativistic, classical field oscillations Very small mass, yet cold dark matter

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion Cosmology in PLB 120 (1983)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Killing Two Birds With One Stone Peccei-Quinn mechanism Solves strong CP problem May provide dark matter in the form of axions

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Cosmic Axion Density Modern values for QCD parameters and temperature-dependent axion mass imply (Bae, Huh & Kim, arXiv: )

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Cold Axion Populations Case 2: Reheating restores PQ symmetry Case 1: Inflation after PQ symmetry breaking Isocurvature fluctuations from large quantum fluctuations of massless axion field created during inflation Strong CMB bounds on isocurvature fluctuations Scale of inflation required to be small Dark matter density a cosmic random number (“environmental parameter”)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Inflation, Axions, and Anthropic Selection

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Lee-Weinberg Curve for Neutrinos and Axions 10 eV 10  eV CDM HDM Axions Thermal Relics Non-Thermal Relics 10 eV CDMHDM 10 GeV Neutrinos & WIMPs Thermal Relics

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Neutrino and Axion Hot Dark Matter Limits Credible regions for neutrino plus axion hot dark matter (WMAP-7, SDSS, HST) Hannestad, Mirizzi, Raffelt & Wong [arXiv: ] 95%68%

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion BoundsDirectsearches Too much cold dark matter (classic) TelescopeExperiments Globular clusters (a-  -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Too much hot dark matter CAST ADMX CARRACK Classic region Anthropic region [GeV] f a eVkeVmeV  eV mama neV 10 15

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 BBN Summary 2004 vs Fields and Sarkar, in: Review of Particle Physics 2004 (left) and 2010 (right)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 New BBN limits on sub-MeV mass axions Cadamuro, Hannestad, Raffelt & Redondo, arXiv: (JCAP) Axions essentially in thermal equilibrium throughout BBN e  e  annihilation partly heats axions  missing photons Reduced photon/baryon fraction during BBN Reduced deuterium abundance, using WMAP baryon fraction

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Creation of Adiabatic vs. Isocurvature Perturbations Inflaton fieldAxion field Slow roll Reheating De Sitter expansion imprints scale invariant fluctuations Inflaton decay  matter & radiation Both fluctuate the same: Adiabatic fluctuations Inflaton decay  radiation Axion field oscillates late  matter Matter fluctuates relative to radiation: Entropy fluctuations De Sitter expansion imprints scale invariant fluctuations

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Power Spectrum of CMB Temperature Fluctuations Acoustic Peaks Sky map of CMBR temperature fluctuations Multipole expansion Angular power spectrum

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 CMB Angular Power Spectrum Purely adiabatic Purely isocurvature Hamann, Hannestad, Raffelt & Wong, arXiv:

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Parameter Degeneracies Hamann, Hannestad, Raffelt & Wong, arXiv: WMAP-5 WMAP-5 + LSS Planck forecast Cosmic Variance Limited (CVL)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Isocurvature Forecast Hubble scale during inflation Axion decay constant Hamann, Hannestad, Raffelt & Wong, arXiv:

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Experimental Tests of Invisible Axions Pierre Sikivie: Macroscopic B-field can provide a large coherent transition rate over a big volume (low-mass axions) Axion helioscope: Look at the Sun through a dipole magnet Axion haloscope: Look for dark-matter axions with A microwave resonant cavity

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Search for Solar Axions  a Sun Primakoff production Axion Helioscope (Sikivie 1983)  Magnet S N a Axion-Photon-Oscillation  Tokyo Axion Helioscope (“Sumico”) (Results since 1998, up again 2008)  CERN Axion Solar Telescope (CAST) (Data since 2003) Axion flux Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, CDMS...)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Tokyo Axion Helioscope (“Sumico”) Moriyama, Minowa, Namba, Inoue, Takasu & Yamamoto PLB 434 (1998) 147 Inoue, Akimoto, Ohta, Mizumoto, Yamamoto & Minowa PLB 668 (2008) 93

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 CAST at CERN

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Sun Spot on CCD with X-Rays

ROI „suspicious pressure“ 90 min tracking result

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion-Photon-Conversion Stationary Klein-Gordon equation for photons and axions in external transverse B-field Conversion probability

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Helioscope Limits CAST-I results: PRL 94: (2005) and JCAP 0704 (2007) 010 CAST-II results (He-4 filling): JCAP 0902 (2009) 008

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Next Generation Axion Helioscope I. Irastorza et al., “Towards a new generation axion helioscope”, arXiv:

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Helioscope Prospects SN 1987A Limits

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion-Like Particles (ALPs) Two-photon decay Primakoff effect B ext Star Galaxy Magnetically induced vacuum birefringence B ext Vacuum Cotton-Mouton effect Gravitational light deflection

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Recent “shining-light-through-a-wall” or vacuum birefringence experiments: ALPS BMV BFRT GammeV LIPPS OSQAR PVLAS Photon Regeneration Experiment at DESY (ALPS) Ehret et al. (ALPS Collaboration), arXiv: (DESY, using HERA dipole magnet) (Laboratoire National des Champs Magnétiques Intens, Toulouse) (Brookhaven, 1993) (Fermilab) (Jefferson Lab) (CERN, using LHC dipole magnets) (INFN Trieste)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Limits on Axion-Like Particles from Laser Experiments Ehret et al. (ALPS Collaboration), arXiv: Limits on pseudoscalars, similar plot for scalars

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Search for Galactic Axions (Cold Dark Matter) Power Frequency mama Axion Signal Thermal noise of cavity & detector Power of galactic axion signal Microwave Energies (1 GHz  4  eV) Dark matter axions Velocities in galaxy Energies therefore m a = 1  100  eV v a  10  3 c E a  (1  10  6 ) m a Axion Haloscope (Sikivie 1983) B ext  8 Tesla Microwave Resonator Q  10 5 Primakoff Conversion  a B ext Cavity overcomes momentum mismatch

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Axion Dark Matter Searches Limits/sensitivities, assuming axions are the galactic dark matter 1. Rochester-Brookhaven- Fermilab, PRD 40 (1989) University of Florida PRD 42 (1990) US Axion Search ApJL 571 (2002) L27 4. CARRACK I (Kyoto) hep-ph/ ADMX (US) foreseen RMP 75 (2003) New CARRACK (Kyoto) K.Imai (Panic 2008) 6

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 ADMX Hardware Gianpaolo Carosi, Talk at Fermilab (May 2007)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 SQUID Microwave Amplifiers in ADMX Gianpaolo Carosi, Talk at Fermilab (May 2007)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 ADMX phase I: First-year science data (2009)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 And if the axion be found? Karl van Bibber at IDM 2008

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Fine Structure in the Axion Spectrum Axion distribution on a 3-dim sheet in 6-dim phase space Is “folded up” by galaxy formation Velocity distribution shows narrow peaks that can be resolved More detectable information than local dark matter density P.Sikivie & collaborators

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 CARRACK Kenichi Imai

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 New CARRACK (Kyoto)

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 CARRACK Apparatus Kenichi Imai

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Searching for Axions in the Anthropic Window Graham & Rajendran, arXiv:

Georg Raffelt, MPI Physics, Munich 4 th Schrödinger Lecture, University Vienna, 24 May 2011 Summary