Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks

Slides:



Advertisements
Similar presentations
Deadlocks Today Resources & deadlocks Dealing with deadlocks Other issues Next Time Memory management.
Advertisements

MODERN OPERATING SYSTEMS Third Edition ANDREW S
Ceng Operating Systems Chapter 2.4 : Deadlocks Process concept  Process scheduling  Interprocess communication  Deadlocks Threads.
Chapter 3 Deadlocks TOPICS Resource Deadlocks The ostrich algorithm
MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 6 Deadlocks Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
Tanenbaum Ch 6 Silberschatz Ch 7
5/25/2015Page 1 Deadlock Management B. Ramamurthy.
DEADLOCK.
Chapter 3 Deadlocks - Αδιέξοδα 3.1. Resource
With slides from C. Griwodz, K. Li, A. Tanenbaum and M. van Steen
Avishai Wool lecture Introduction to Systems Programming Lecture 5 Deadlocks.
DPNM Lab. Dept. of CSE, POSTECH
Deadlock Chapter 3 R1 R2 P2P1 Allocated Requested.
Deadlocks Tore Larsen With slides from T. Plagemann, C. Griwodz, K. Li, A. Tanenbaum and M. van Steen.
Mehdi Naghavi Spring 1386 Operating Systems Mehdi Naghavi Spring 1386.
Chapter 3: Deadlocks Chapter 3 2 CMPS 111, UC Santa Cruz Overview  Resources  Why do deadlocks occur?  Dealing with deadlocks Ignoring them: ostrich.
Deadlocks. 2 System Model There are non-shared computer resources –Maybe more than one instance –Printers, Semaphores, Tape drives, CPU Processes need.
The Banker’s Algorithm for A Single Resource
Chapter 7: Deadlocks. 7.2 Chapter Objectives To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks.
Deadlock CSCI 444/544 Operating Systems Fall 2008.
CS450/550 Deadlocks.1 Adapted from MOS2E UC. Colorado Springs CS450/550 Operating Systems Lecture 3 Deadlocks Palden Lama Department of Computer Science.
Chapter 3 Chapter 3: Deadlocks Chapter 3 2 CS 1550, cs.pitt.edu (originaly modified by Ethan L. Miller and Scott A. Brandt) Overview Resources Why do.
Deadlock Chapter 3 Thursday, February 22, Today’s Schedule Assignment #4 from Chapter 3 posted Deadlock - Chapter 3  Skip multiple resources (3.4.2.
1 Processes, Threads, Race Conditions & Deadlocks Operating Systems Review.
CH 3 Deadlock When 2 (or more) processes remain blocked forever!
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
Chapter 3: Deadlocks. CMPS 111, Fall Overview ✦ Resources ✦ Why do deadlocks occur? ✦ Dealing with deadlocks Ignoring them: ostrich algorithm Detecting.
Overview Resources Why do deadlocks occur? Dealing with deadlocks Ignoring them: ostrich algorithm Detecting & recovering from deadlock Avoiding deadlock.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention.
1 Deadlocks 2 Resources Examples of computer resources –printers –tape drives –tables Processes need access to resources in reasonable order Suppose.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
1 Deadlocks Chapter 3. 2 Resources Examples of computer resources –printers –tape drives –tables Processes need access to resources in reasonable order.
1 Pertemuan 10 Deadlock (lanjutan) Matakuliah: T0316/sistem Operasi Tahun: 2005 Versi/Revisi: 5.
Operating Systems 软件学院 高海昌 Operating Systems Gao Haichang, Software School, Xidian University 22 Contents  1. Introduction** 
Operating Systems Part III: Process Management (Deadlocks)
1 Deadlock Definition of deadlock Condition for its occurrence Solutions for avoiding and breaking deadlock –Deadlock Prevention –Deadlock Avoidance –Deadlock.
1 Deadlocks Chapter Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance.
1 MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 6 Deadlocks Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 7: Deadlocks.
MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 6 Deadlocks Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All.
CSC 322 Operating Systems Concepts Lecture - 28: by Ahmed Mumtaz Mustehsan Special Thanks To: Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall,
Deadlocks System Model RAG Deadlock Characterization
CS333 Intro to Operating Systems Jonathan Walpole.
Operating Systems COMP 4850/CISG 5550 Deadlocks Dr. James Money.
CH 3 Deadlock When 2 (or more) processes remain blocked forever!
Deadlocks References –text: Tanenbaum ch.3. Deadly Embrace Deadlock definition –A set of process is dead locked if each process in the set is waiting.
Deadlocks Chapter 6 Tanenbaum & Bo, Modern Operating Systems:4th ed., (c) 2013 Prentice-Hall, Inc. All rights reserved.
Lecture 6 Deadlock 1. Deadlock and Starvation Let S and Q be two semaphores initialized to 1 P 0 P 1 wait (S); wait (Q); wait (Q); wait (S);. signal (S);
Sistem Operasi IKH311 Deadlock. 2 Resources Examples of computer resources printers tape drives tables Processes need access to resources in reasonable.
Deadlocks Lots of resources can only be used by one process at a time. Exclusive access is needed. Suppose process A needs R1 + R2 and B needs R1 + R2.
Operating Systems Chapter 3: Deadlocks
MODERN OPERATING SYSTEMS Third Edition ANDREW S
Deadlock Management.
Chapter 6 : Deadlocks What is a Deadlock?
Deadlocks References text: Tanenbaum ch.3.
Lecture 18: Deadlock: Conditions, Detection and Avoidance (cont.)
Lecture 19: Deadlock: Conditions, Detection and Avoidance
Deadlocks References text: Tanenbaum ch.3.
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
DPNM Lab. Dept. of CSE, POSTECH
Review: Readers-Writers Problem
MODERN OPERATING SYSTEMS Third Edition ANDREW S
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
Lecture 19: Deadlock: Conditions, Detection and Avoidance
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
Introduction to Deadlocks
Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks
Deadlocks References text: Tanenbaum ch.3.
MODERN OPERATING SYSTEMS Third Edition ANDREW S
Presentation transcript:

Chapter 3 Deadlocks 3.1. Resource 3.2. Introduction to deadlocks 3.3. The ostrich algorithm 3.4. Deadlock detection and recovery 3.5. Deadlock avoidance 3.6. Deadlock prevention 3.7. Other issues

Resources Examples of computer resources printers tape drives tables Processes need access to resources in reasonable order Suppose a process holds resource A (e.g. scanner) and requests resource B (e.g. CD recorder) at same time another process holds B and requests A both are blocked and remain so

Resources Deadlocks occur when … processes are granted exclusive access to devices we refer to these devices generally as resources A resource is anything that can be used by a single process at any instant of time. Preemptable resources can be taken away from a process with no ill effects (e.g. memory) Nonpreemptable resources will cause the process to fail if taken away (e.g. CD recorder)

Resources Sequence of events required to use a resource request the resource use the resource release the resource Must wait if request is denied requesting process may be blocked may fail with error code

Resources Associate a semaphore with each resource (Deadlock-free Code): typedef int semaphore; semaphore resource_1; semaphore resource_2; void process_A(void) { void process_B(void) { down(resource_1); down(resource_1); down(resource_2); down(resource_2); use_both_resources(); use_both_resources(); up(resource_2); up(resource_2); } }

Introduction to Deadlocks Formal definition : A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set can cause Usually the event is release of a currently held resource None of the processes can … run release resources be awakened

Four Conditions for Deadlock Mutual exclusion condition each resource assigned to 1 process or is available Hold and wait condition process holding resources can request additional No preemption condition previously granted resources cannot forcibly taken away Circular wait condition must be a circular chain of 2 or more processes each is waiting for resource held by next member of the chain

Deadlock Modeling Modeled with directed graphs resource R assigned to process A process B is requesting/waiting for resource S process C and D are in deadlock over resources T and U

Resource-Allocation Graph A set of vertices V and a set of edges E. V is partitioned into two types: P = {P1, P2, …, Pn}, the set consisting of all the processes in the system. R = {R1, R2, …, Rm}, the set consisting of all resource types in the system. request edge – directed edge P1  Rj assignment edge – directed edge Rj  Pi

Resource-Allocation Graph Process Resource Type with 4 instances Pi requests instance of Rj Pi is holding an instance of Rj Pi Rj Pi Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Resource Allocation Graph With A Cycle But No Deadlock

Basic Facts If graph contains no cycles  no deadlock. If graph contains a cycle  if only one instance per resource type, then deadlock. if several instances per resource type, possibility of deadlock.

Deadlock Modeling Strategies for dealing with Deadlocks just ignore the problem altogether detection and recovery dynamic avoidance careful resource allocation prevention negating one of the four necessary conditions

Deadlock Modeling A B C How deadlock occurs

How deadlock can be avoided Deadlock Modeling (o) (p) (q) How deadlock can be avoided

The Ostrich Algorithm Pretend there is no problem Reasonable if deadlocks occur very rarely cost of prevention is high UNIX and Windows takes this approach It is a trade off between convenience correctness

Detection with One Resource of Each Type Note the resource ownership and requests A cycle can be found within the graph, denoting deadlock

Detection with Multiple Resources of Each Type Data structures needed by deadlock detection algorithm Σ Cij + Aj = Ej

Deadlock Detection Algorithm Recovery Look for an unmark process Pi s.t. the i-th row of R is less than A. (P1 's request can be satisfied ) If such a process is found, add the i-th row of C to A, mark the process and go back to step 1. ( When Pi completes, its resources will become available ). If no such process exist, the algorithm terminates. The unmarked process, if any, are deadlock.

Detection with Multiple Resources of Each Type An example for the deadlock detection algorithm

Recovery from Deadlock Recovery through preemption take a resource from some other process depends on nature of the resource Recovery through rollback checkpoint a process periodically use this saved state restart the process if it is found deadlocked

Recovery from Deadlock Recovery through killing processes crudest but simplest way to break a deadlock kill one of the processes in the deadlock cycle the other processes get its resources choose process that can be rerun from the beginning

Deadlock Avoidance Resource Trajectories Two process resource trajectories

Demonstration that the state in (a) is safe Safe and Unsafe States (a) (b) (c) (d) (e) Demonstration that the state in (a) is safe A state is safe if it is not deadlock and there is a way of satisfying all pending requests by running the process in some order

Safe and Unsafe States Demonstration that the sate in b is not safe (a) (b) (c) (d) Demonstration that the sate in b is not safe

The Banker's Algorithm for a Single Resource (a) (b) (c) Three resource allocation states safe unsafe

Banker’s Algorithm Some Look for a new row in R which is smaller than A. If no such row exists the system will eventually deadlock ==> not safe. If such a row exists, the process may finish. mark that process (row) as terminate and add all of its resources to A. Repeat Steps 1 and 2 until all rows are marked == > safe state or not marked == > not safe.

Banker's Algorithm for Multiple Resources Example of banker's algorithm with multiple resources

Deadlock Prevention Attacking the Mutual Exclusion Condition Some devices (such as printer) can be spooled only the printer daemon uses printer resource thus deadlock for printer eliminated Not all devices can be spooled Principle: avoid assigning resource when not absolutely necessary as few processes as possible actually claim the resource

Attacking the Hold and Wait Condition Require processes to request resources before starting a process never has to wait for what it needs Problems may not know required resources at start of run also ties up resources other processes could be using Variation: process must give up all resources then request all immediately needed

Attacking the No Preemption Condition This is not a viable option Consider a process given the printer halfway through its job now forcibly take away printer !!??

Attacking the Circular Wait Condition (a) (b) Normally ordered resources A resource graph Number all resources and require all requests to be made in numerical order.

Attacking the Circular Wait Condition Summary of approaches to deadlock prevention

Other Issues Two-Phase Locking Phase One process tries to lock all records it needs, one at a time if needed record found locked, start over (no real work done in phase one) If phase one succeeds, it starts second phase, performing updates releasing locks Note similarity to requesting all resources at once Algorithm works where programmer can arrange program can be stopped, restarted

Nonresource Deadlocks Possible for two processes to deadlock each is waiting for the other to do some task Can happen with semaphores each process required to do a down() on two semaphores (mutex and another) if done in wrong order, deadlock results

Starvation Algorithm to allocate a resource may be to give to shortest job first Works great for multiple short jobs in a system May cause long job to be postponed indefinitely even though not blocked Solution: First-come, first-serve policy